
Dissection of Deep Neural Networks

by

David Bau

A.B., Harvard University (1991)
M.S., Cornell University (1994)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021

Certified by. .
Antonio Torralba

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Dissection of Deep Neural Networks

by

David Bau

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

We investigate the role of neurons within the internal computations of deep neural
networks for computer vision.

We introduce network dissection, a method for quantifying the alignment be-
tween human-interpretable visual concepts and individual neurons in a deep network.
We apply network dissection to examine and compare the internal computations
of several networks trained to classify and represent images, and we ask how well
human-understandable concepts align with neurons at different layers, in different ar-
chitectures, with various training objectives; we also compare neurons to random linear
combinations of neurons, and examine emergence of concepts as training proceeds.

Then, we adapt network dissection to analyze generative adversarial networks. In
GAN dissection, human-understandable neurons are identified by applying a semantic
segmentation model to generated output. We find that small sets of neurons control
the presence of specific objects within synthesized scenes. We also find that activating
neurons reveals modeled rules and interactions between objects and their context.

We then ask how to dissect and understand the omissions of a generative network.
Omissions of human-understandable objects can be quantified by comparing semantic
segmentation statistics between the training distribution and the generated distribution.
Then we develop a method that can invert and reconstruct generated images in a
progressive GAN, and show that this reconstruction can visualize specific cases in
which the GAN omits identified object classes.

Finally, we ask how rules within a generative model are represented. We hypothesize
that the layers of a generative model serve as a memory that stores associations from
representations of concepts at the input of a layer to patterns of concepts at the output
to the layer, and we develop a method for rewriting the weights of a model by directly
rewriting one memorized association. We show that our method can be used to rewrite
several individual associative memories in a Progressive GAN or StyleGAN, altering
learned rules that govern the appearance of specific object parts in the model.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

My PhD studies have occurred during the phase of my life when instead of going to

school and puzzling over the role of neurons in deep networks, I should be working

to support my children’s college education. Yet in my choices I have always had the

bedrock support and indulgence of my wife and partner in life, Heidi Yeh, and our

three beloved children Cody, Piper, and Anthony. I am fortunate to have their love.

My research at MIT has been guided by the leadership, creativity, and encour-

agement of my advisor Antonio Torralba. I have also learned many lessons from his

postdoc and my close collaborator and mentor, Jun-Yan Zhu. I will be forever grateful

to have benefited from their wealth of experience and knowledge throughout my

journey here. I have been blessed to have been given the chance to learn from them.

For inspiration, I thank the many senior academics who have been generous in

sharing their time and imparting their wisdom as well as their obvious love of the

academy and intellectual life. Their endless curiosity has nourished my own. I have been

especially inspired by Hal Abelson, Gerald Sussman, Bill Freeman, Nancy Kanwisher,

Aude Oliva, Jacob Andreas, Josh Tenenbaum, my advisors Daniela Rus, Rob Miller

and Nick Trefethen, as well as the readers of this dissertation Phillip Isola, Alexei

Efros, and Aleksander Madry.

The ideas in these pages derive from years of fertile conversation with my friends

and collaborators Bolei Zhou, Jonas Wulff, Hendrik Strobelt, Ali Jahanian, Aditya

Khosla, Alex Andonian, Lucy Chai, Tongzhou Wang, Javier Marín, Dídac Surís,

Yonatan Belinkov, Julius Adebayo, Karren Yang, Prafull Sharma, Jan Stühmer, Adrià

Recasens, Carl Vondrik, Jonathan Frankle, Leilani Gilpin, Josh Sheldon, Sheng-Yu

Wang, Ser-Nam Lim, Daksha Yadav, Bill Ferguson, Jaden Fiotto-Kaufman, Josh

Fasching, Pratushya Sharma, Sarah Schwettmann, Evan Hernandez, Shibani San-

turkar, Dimitris Tsipras, Xavier Puig Fernandez, Nadiia Chepurko, Dim Papadopoulos,

Ethan Weber, David Harwath, Wei-Chiu Ma, Manel Baradad, Shuang Li, Joanna

Materzynska, Chuang Gan, Yunzhu Li, Jingwei Ma, Brian Cheung, Ankur Bhargava,

Thomas Colthurst, James Synge, Rio LaVigne, Carrie Cai, Nick Hynes, Elena Glass-

5

man, Amy Zhang, William Peebles, Steven Liu, Mahi Elango, Christine You, Evan

Shelhamer, James Gilles, Wendy Wei, Brian Park, Tony Peng, Brian Shimanuki, Kaveri

Nadhamuni, Sam Boshar, Ben Gardner, Kevin Meng, Audrey Cui, and Anthony Bau.

This dissertation would not have been possible without all of you.

During my PhD I have had the privilege to work on many fascinating research

problems together with talented researchers at several industry and government

partners, and I thank these organizations for both their collaboration and their

financial support. These include the DARPA Explainable Artificial Intelligence (XAI)

program, the MIT-IBM Watson AI Lab, DARPA SAIL-ON, Adobe Research, Facebook

Research, and Philips Signify Research.

6

Contents

1 Introduction 17

1.1 Dissecting a classifier . 18

1.2 Dissecting a generator . 22

1.3 Seeing what a GAN cannot generate 26

1.4 Rewriting rules in a generative model 27

1.5 Summary . 30

2 Literature Review 35

2.1 Other ways to understand a deep network 36

2.1.1 Surrogate models and explanation models 36

2.1.2 Salience methods . 38

2.1.3 Unit and latent vector methods 40

2.2 Inspiration from neuroscience . 42

2.2.1 The distributed code model 42

2.2.2 The neuron doctrine . 43

2.2.3 Sparse coding and artificial neural networks 45

3 Network Dissection 57
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba. CVPR 2017.

3.1 Introduction . 57

3.1.1 Related work . 59

3.2 Network Dissection . 59

3.2.1 Broden: Broadly and Densely Labeled Dataset 61

7

3.2.2 Scoring unit interpretability 62

3.3 Experiments . 63

3.3.1 Human evaluation of interpretations 66

3.3.2 Measurement of axis-aligned interpretability 67

3.3.3 Disentangled concepts by layer 70

3.3.4 Network architectures and supervisions 71

3.3.5 Training conditions vs. interpretability 74

3.3.6 Discrimination vs. interpretability 75

3.3.7 Layer width vs. interpretability 76

3.4 Discussion . 77

4 GAN Dissection 83
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T.

Freeman, Antonio Torralba. ICLR 2019.

4.1 Introduction . 83

4.2 Related work . 85

4.3 Method . 86

4.3.1 Characterizing units by dissection 88

4.3.2 Measuring causal relationships using intervention 89

4.4 Results . 92

4.4.1 Comparing units across datasets, layers, and models 92

4.4.2 Diagnosing and improving GANs 94

4.4.3 Locating causal units with ablation 96

4.4.4 Characterizing contextual relationships via insertion 97

4.5 Discussion . 98

5 Seeing what a GAN Cannot Generate 105
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T.

Freeman, Antonio Torralba. ICCV 2019.

5.1 Introduction . 105

5.2 Related work . 107

5.3 Method . 109

8

5.3.1 Quantifying distribution-level mode collapse 109

5.3.2 Quantifying instance-level mode collapse 111

5.4 Results . 114

5.4.1 Generated Image Segmentation Statistics 116

5.4.2 Sensitivity test . 116

5.4.3 Identifying dropped modes . 116

5.4.4 Layer-wise inversion vs. other methods 117

5.4.5 Layer-wise inversion across domains 121

5.5 Discussion . 122

6 Rewriting a Deep Generative Model 129

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba. ECCV 2020.

6.1 Introduction . 129

6.2 Related work . 132

6.3 Method . 134

6.3.1 Objective: Changing a rule with minimal collateral damage . . 134

6.3.2 Viewing a convolutional layer as an associative memory 136

6.3.3 Updating 𝑊 to insert a new value 138

6.3.4 Generalize to a nonlinear neural layer 139

6.4 User interface . 140

6.5 Results . 142

6.5.1 Putting objects into a new context 143

6.5.2 Removing undesired features 145

6.5.3 Changing contextual rules . 147

6.6 Discussion . 147

7 Epilogue 157

7.1 The end of algorithmics foretold . 157

7.2 Computing as a science . 158

9

A Supplementary Material on GAN Dissection 161

A.1 Automatic identification of artifact units 161

A.2 Human evaluation of dissection . 162

A.3 Protecting segmentation model against unrealistic images 164

A.4 Computing causal units . 165

A.5 Tracing the effect of an intervention 167

A.6 Monitoring GAN units during training 168

A.7 All layers of a GAN . 168

B Supplementary Material on Rewriting a Generative Model 173

B.1 Solving for Λ algebraically . 180

B.2 Implementation details . 180

B.3 Rank reduction for 𝐷𝑆 . 182

B.4 Axis-aligned rank reduction for 𝐷𝑆 184

B.5 Experiment details and results . 184

B.6 Reflection experiment details . 185

B.7 Selecting a layer for editing . 186

10

List of Figures

1-1 The response of one unit to one image. 18

1-2 Specificity and invariance of one unit’s response across images. 19

1-3 Charting the concepts of a layer. 20

1-4 Testing the dense distributed code hypothesis. 21

1-5 Identifying semantics for one unit of a GAN using segmentation. . . . 22

1-6 The emergence of object and part neurons in an unsupervised GAN. . 23

1-7 Removing and activating concept units in a GAN. 24

1-8 The GAN Paint user interface. 25

1-9 Two ways to understand GAN omissions. 27

1-10 The goal of rewriting a generative model. 28

1-11 A single-layer associative memory model. 28

1-12 Human interaction for rewriting a generative model. 29

2-1 CAM heatmaps for different classes. 38

2-2 Synthesized images for feature visualization. 40

2-3 Selectivity and invariance of one neuron for Halle Berry. 44

3-1 Examples of image regions that maximize units in several networks. . 57

3-2 Samples from the Broden Dataset. 61

3-3 Illustration of network dissection. 64

3-4 Interpretability over changes in basis. 68

3-5 A comparison of interpretability across layers of AlexNet. 69

3-6 A comparison visual concept detectors across network architectures. . 69

3-7 Interpretability across different architectures and training. 70

11

3-8 A comparison of semantics of units across training tasks. 71

3-9 Units in self-supervised networks. 72

3-10 Unit interpretability during training. 73

3-11 Effect of regularizations on the interpretability of CNNs. 73

3-12 Comparing accuracy to unique object detector units. 76

3-13 Comparing units on network architectures of different widths. 77

4-1 Examples of the effects of zeroing and activating GAN generator units. 84

4-2 Overview of GAN dissection. 87

4-3 Examples of image regions maximizing units in two GANs. 88

4-4 Effect of zeroing larger sets of tree-causal units. 91

4-5 Comparison between models trained on different training sets. 93

4-6 Comparison between layers of a GAN generator. 94

4-7 Comparison between generators trained under different objectives. . . 95

4-8 Units responsible for visual artifacts. 96

4-9 Measuring ablation of units on GAN-generated conference rooms. . . 97

4-10 Measuring ablation of units for windows. 98

4-11 Effect of activating door-casual units in different contexts. 99

5-1 Seeing what a GAN cannot generate in two ways. 106

5-2 Comparing distribution deviations on two bedroom GAN models. . . 110

5-3 Overview of our layer inversion method. 113

5-4 Sensitivity test for Generated Image Segmentation Statistics. 115

5-5 Visualization of the omissions of a bedroom generator. 115

5-6 Comparison of methods to invert a Progressive GAN. 118

5-7 Inverting layers of a Progressive GAN bedroom generator. 120

5-8 Inverting layers of a Progressive GAN outdoor church generator. . . . 121

6-1 Rewriting the weights of a generator to change generative rules. . . . 130

6-2 Associative memory within a convolutional network. 137

6-3 The Copy-Paste-Context interface for rewriting a model. 141

12

6-4 Adding and replacing objects in three different settings. 142

6-5 Removing watermarks from StyleGANv2 churches. 145

6-6 Inverting a single semantic rule within a model. 146

A-1 Visualizing units that cause artifacts. 162

A-2 Comparing methods for finding units that cause artifacts. 163

A-3 Two examples of generator units that our dissection method labels

differently from humans. 164

A-4 Two examples of units that correlate with unrealistic images that confuse

a semantic segmentation network. 165

A-5 Filtering units by FID score. 165

A-6 Tracing the effect of inserting door units on downstream layers. . . . 167

A-7 Evolution of units during GAN training. 170

A-8 All layers of a Progressive GAN trained on living room images. 171

B-1 Giving horses a hat to wear. 174

B-2 Giving horses a longer tail. 175

B-3 Removing main windows from churches. 176

B-4 Reducing the occlusion of buildings by trees. 177

B-5 Removing earrings. 178

B-6 Removing glasses. 179

B-7 FID of rendered cropped activations for StyleGANv2. 187

B-8 FID of cropped StyleGANv2 reconstructions, by layer. 187

B-9 Cropped activations at various layers of a kitchen StyleGANv2. . . . 188

B-10 FID of cropped Progressive GAN reconstructions, by layer. 188

B-11 Cropped representations at layers of a church GAN. 189

B-12 Cropped representations at layers of a kitchen GAN. 190

13

14

List of Tables

3.1 Statistics of each label type included in the data set. 61

3.2 Tested CNN Models. 64

3.3 Human evaluation of our Network Dissection approach. 66

4.1 Comparison of image quality before and after removing artifact units. 95

5.1 FSD summarizes Generated Image Segmentation Statistics. 116

6.1 Rewriting a rule for smiles on a StyleGANv2 model of faces. 143

6.2 Rewriting a rule for dome in a StyleGANv2 church model. 143

6.3 Rewriting a rule for watermarks in a StyleGANv2 model of churches. 144

A.1 Image quality before and after removing artifact units. 162

15

16

Chapter 1

Introduction

This thesis proposes a way to understand how deep networks work. We ask the

fundamental question: Do deep neural networks contain concepts?

Inspired by decades of neuroscience research on biological brains,∗ I introduce

methods for directly probing the internal structure of an artificial neural network

by testing the activity of individual neurons and their interactions. Because in our

computerized setting we have the luxury of examining every neuron of a trained

network, we assume a detailed systems view: we investigate the role of every individual

unit, and test every unit on a broad range of stimuli.

By beginning with the simplistic proposal that an individual neuron might represent

one internal concept,† we pursue our fundamental question in a concrete, quantitative

way: Which neurons? Which concepts? What are concept neurons used for? Then:

Can we see which concepts are missing? And: Can we see rules governing concept

relationships? Taken together, the research challenges the notion that a neural network

is hopelessly opaque. Instead, we tear back the curtain and chart a path through the

Defense talk video, demos, code and data at https://dissection.csail.mit.edu/.
∗In experiments ranging from the Lettvin et al. [1959] study of the frog optic nerves to the Quiroga

[2012] observation of a single neuron selective for one particular celebrity, neuroscience has a long and
continuing tradition of measuring the response of single neurons to particular classes of nontrivial
stimuli. Several inspiring experiments are described in Chapter 2.

†This is a simplification of the neuron doctrine [Barlow, 1972], which is not the modern consensus
in neuroscience; mainstream views are closer to the distributed coding model [Haxby et al., 2001].
Nevertheless, for understanding artificial neural networks we take the old neuron doctrine seriously
with full awareness of distributed codes. We discuss this debate further in Chapter 2.

17

https://dissection.csail.mit.edu/

Network output

“baseball field”

(c) Single unit response (d) Highest activation regions(b) Input image

(a) Convolutional neural network classifier

Figure 1-1: The response of one unit to one image. In a convolutional network, individual
neurons are part of a unit of identically-parameterized neurons that perform the same
calculation at each location in the visual field. To visualize the response of a neuron, we
consider it together with the full grid of neurons within its unit, and highlight the portions
of the image in which those neurons are firing strongest. Here unit 208 of layer conv5_3 of
the VGG-16 network activates on top parts of bodies of two baseball players in an image.

detailed structure of a network by which we can begin to understand its logic.

In Chapter 2 we review the literature to survey other approaches for understanding

neural networks, and we also review the history of classical neuroscience experiments

that motivated the neuron doctrine. Then in subsequent chapters we present the

methods, experiments, and results of our current work. Each of Chapters 3-6 describes

a set of experimental results that I have previously presented at computer vision

conferences together with collaborators who are noted in each chapter. The remainder

of this chapter gives an extended overview.

1.1 Dissecting a classifier

What is a neuron’s purpose? We know that individual units have been seen to respond

to object classes, parts, textures, tense, gender, context, and sentiment (see Figures 1-1,

1-2 and [Zeiler and Fergus, 2014, Zhou et al., 2015, Mahendran and Vedaldi, 2015,

Karpathy et al., 2016, Radford et al., 2017]). And when images are synthesized to

maximize the response of single neurons, the results can resemble real-world objects

such as faces or animal parts or vehicles [Erhan et al., 2009, Szegedy et al., 2014,

Mordvintsev et al., 2015, Nguyen et al., 2015, Olah et al., 2017, Mahendran and

Vedaldi, 2015, Nguyen et al., 2016, 2017].

18

Figure 1-2: The specificity and invariance of a unit is revealed by testing its response on
many images. Unit 208 is specific to people wearing hats. It does not activate strongly on
non-hat-wearing-people, but it activates on hat-wearers in a variety of contexts, poses, and
types of hats. In network dissection, we map out such selectivity by comparing the responses
of every unit in a network to human-labeled segmentations of images in which more than
1000 visual concepts such as object, parts, materials, and textures are labeled. (This unit
emerges in a VGG-16 network trained to classify images of places.)

But are such single-neuron phenomena systematic? To understand the selectivity

of individual neurons quantitatively, we ought to investigate every neuron and test

selectivity for every concept we can imagine. We should test each concept using many

images, and compare concept neurons to baselines using other possible encodings.

In Chapter 3, we pursue that goal by introducing the method of Network Dissection.

Rather than testing each neuron on a single image or a single concept, we test all

neurons on a data set we construct for the purpose (Section 3.2.1). In all, we use more

than 60,000 labeled images with more than 1,000 visual concepts to conduct tests on

every neuron in every layer of several image classification networks.

Our approach allows us to investigate the specifics of the sparse neural code

employed by a network. For example, beyond identifying a neuron that is selective for

trees, we can find and count every neuron in the network that is selective for trees. By

standardizing a metric and applying the same measurement across networks, layers, and

concepts, we can also make quantitative comparisons about the emergence of concepts

globally (Figure 1-3). Our experiments confirm that neurons in a convolutional network

detect a hierarchy of visual concepts of increasing complexity by layer, with simple

textures dominating early layers and neurons for abstract object classes emerging in

later layers. We also find the presence of neurons that detect parts and object classes

19

unit 150 “airplane” (object) unit 141 “fur” (material)unit 208 “person top” (part)

1

7

13
un

its

sh
elf
pla

nt

ce
ilin

g

wind
ow

mou
nta

in
ho

us
e
roa

d

air
pla

ne
gra

ss
tab

le ca
r
ea

rth

pe
rso

n
ho

rse

sig
nb

oa
rd
wate

r
be

d

was
he

r
roc

k

wate
rfa

ll
se

at
do

or

sid
ew

alkfoo
d

pa
int

ingtre
e
bo

at se
a
fie

ld

sw
im

ming
 po

ol
flo

or

gra
nd

sta
ndbu

s

cu
rta

in

bu
ild

ing

bo
ok

ca
se
flo

wer

mon
ito

r

sk
ys

cra
pe

r
so

fa

ap
pa

rel
pa

lm
bo

ttle
sn

ow

ca
bin

et
whe

el

rai
lin

g
fen

ce

sta
irw

ay
tra

ck ba
ll

pe
rso

n-t

pe
rso

n-b

bu
ild

ing
-t
sk

y-b

ce
ilin

g-b
tre

e-b

gra
ss

-t
he

ad
tre

e-t
flo

or-
t

bu
ild

ing
-b leg

clo
ud

mou
nta

in-
t

gra
ss

-b
se

a-t
ca

r-b

wind
ow

-b

ho
us

e-t
wall

-b
sk

y-t

wind
ow

-t
foo

d
ha

ir
sk

in
pa

pe
r

ce
ram

ic
pla

sti
c fur

fol
iag

e
bri

ck
gla

ss
ca

rpe
t
tile

ora
ng

e
ye

llo
w redblu

e
bla

ck
pu

rpl
e
whit

e
pin

k

51
 o

bj
ec

ts

22
 p

ar
ts

12
 m

at
er

ia
ls

8
co

lo
rs

(a) counting all the neurons in a layer that are selective for concepts

(b) single unit responses on images

Figure 1-3: Charting the concepts of a layer. By testing every individual neuron (b) against
all the visual concepts in a large set we can build a map of every neuron for each concept (a).
The height of each bar shows the number of neurons that match the given concept. Individual
concept names can be read by magnifying the figure. This plot uses the method of Bau et al.
[2020], which builds upon the method described in Chapter 3.

that are not explicit in the training task, such as neurons specific to human faces in

networks that were trained to distinguish scene classes. And we identify conditions

under which more or fewer object detection neurons emerge (Sections 3.3.3-3.3.7).

Distributed coding advocates [Plaut and McClelland, 2010, Averbeck et al., 2006,

Haxby et al., 2001] might object to the special attention we pay to single neurons,

because one might argue that concepts live within a population of neurons, not

within individual neurons. Neurons could obtain their selectivity simply by being

undistinguished members of a powerful dense distributed code in which any arbitrary

feature combination would be selective for a meaningful concept. Network dissection

allows us to test that hypothesis directly: we form randomized feature combinations,

and compare their selectivity for concepts against that of individual neurons. When

we perform that test (Section 3.3.2), we find that the dense distributed code model

does not explain selectivity. Although single neurons are not perfect matches for

human-meaningful concepts, they do match concepts much better than arbitrary

feature combinations within the population (Figure 1-4).

Therefore we conclude that neurons are selective for meaningful concepts, and

networks do contain many such neurons. These findings lead to two further puzzles:

1. What causal role does a concept neuron have within the network?‡ Does activat-

‡When we ask about the causal role of a neuron, we are not asking about causality in the real
world, but the simpler question of causality within the network computation: how a neuron’s output

20

IoU 0.09
ball pit

conv5 unit 207 (scene)

IoU 0.09
dotted

conv5 unit 251 (texture)

IoU 0.08
honeycombed

conv5 unit 130 (texture)

IoU 0.08
grid

conv5 unit 52 (texture)

IoU 0.07
wheel

conv5 unit 108 (part)

IoU 0.06
sprinkled

conv5 unit 39 (texture)

0

9

un
its

roa
d ca

r
do

g
bo

ok
gra

ss
ba

ll p
it
whe

el
foo

d

ho
ne

yc
om

be
d
gri

d

sp
rin

kle
d

do
tte

d

mes
he

d

stu
dd

ed

ch
eq

ue
red

pe
rfo

rat
ed
wov

en

po
lka

-do
tte

d

5
ob

je
ct

s
1

sc
en

e
1

pa
rt

1
m

at
er

ia
l

10
 te

xt
ur

es

IoU 0.16
road

conv5 unit 107 (object)

IoU 0.14
car

conv5 unit 79 (object)

IoU 0.14
waffled

conv5 unit 252 (texture)

IoU 0.13
grid

conv5 unit 191 (texture)

IoU 0.13
honeycombed

conv5 unit 41 (texture)

IoU 0.13
mountain

conv5 unit 144 (object)

IoU 0.13
grass

conv5 unit 88 (object)

IoU 0.12
paisley

conv5 unit 229 (texture)

0

6

un
its

wate
r
tre

e
gra

ss
pla

nt ca
r

wind
ow

pa
nese

a

air
pla

ne

mou
nta

in

sk
ys

cra
pe

r

ce
ilin

g

bu
ild

ingdo
g

pe
rso

n
roa

d

pa
int

ing
sto

vebe
d
ch

air
ho

rseflo
or
ho

us
e sk

y
tra

ckbu
s

wate
rfa

ll
sin

k

ca
bin

et
sh

elf

po
ol

tab
le

sid
ew

alkbo
ok
ba

ll p
it

mou
nta

in
sn

ow
y
str

ee
t

sk
ys

cra
pe

r

pa
ntr

y

bu
ild

ing
 fa

ca
deha

ir
whe

el
he

ad

sc
ree

n

sh
op

 w
ind

ow

cro
ss

walkfoo
d
woo

d
lin

ed
do

tte
d

stu
dd

ed

ba
nd

ed

zig
za

gg
ed

ho
ne

yc
om

be
d
gri

d

pa
isle

y

po
tho

led

mes
he

d
sw

irly

sp
ira

lle
d

fre
ck

led

sp
rin

kle
d

fib
rou

s

waffl
ed

ple
ate

d

gro
ov

ed

cra
ck

ed

ch
eq

ue
red

co
bw

eb
be

d

matt
ed

str
ati

fie
d

pe
rfo

rat
ed
wov

en red

32
 o

bj
ec

ts

6
sc

en
es

6
pa

rts

2
m

at
er

ia
ls

25
 te

xt
ur

es
1

co
lo

r

(a) The learned neurons of Alexnet Layer 5: 72 concepts with IoU > 0.04

(b) Units of a random basis for the same layer: 18 concepts with IoU > 0.04

Figure 1-4: Testing the dense distributed code hypothesis. The units of a layer align with
more human-meaningful visual concepts (a) than would be expected for an arbitrary linear
coding of the same representation space (b). The two image representations have perfectly
equivalent power and classification accuracy because each is a feature-space rotation of the
other. Experiment from Section 3.3.2.

ing a concept neuron cause the network to perceive that concept?

2. Why do neurons tend toward human-meaningful concepts? Do concept detectors

arise due to the supervision of human-created labels in training?

Neuron causality can be investigated in classifiers by measuring the impact of removal

of neurons on accuracy. Although removing one concept neuron tends to have negligible

impact on overall accuracy [Morcos et al., 2018], neuron removal does have a strong

impact on the accuracy of individual classes. In Bau et al. [2020] and Zhou et al.

[2018], our measurements of causal links between neuron and classes hint at a neuron’s

purpose. For example, removing the hat neuron damages classification accuracy for

the baseball field and construction site classes, which might suggest that the network

was blinded to baseball hats and construction helmets. However, evidence from such

experiments remains circumstantial, since we cannot directly ask the classifier what it

perceives when a neuron is removed.

The challenge of clarifying the purpose and causal role of concept-correlated

neurons motivates us to move beyond classifiers to study an unsupervised generative

setting, which we introduce next.

causes the network behavior to change. This can be tested by overriding the neuron’s output and
substituting a given value (e.g. set to zero to remove a neuron) when running the network.

21

(b) Randomly generated image

Random vector

512 dimensions

(e) Comparison to highest
activations of unit

(a) GAN generator network

(c) Single unit response

(d) Semantic segmentaton

trees in the imagesegmentation
network

upsample

Figure 1-5: When a GAN network (a) synthesizes a random realistic image (b), the semantics
for a single unit can be measured by comparing the unit response (c) to the predictions of a
segmentation network trained to locate human-meaningful concepts in an image (d). Here a
single unit has some agreement with the locations of trees in the generated image (e). In
GAN dissection, we measure this agreement across many images.

1.2 Dissecting a generator

An unconditional Generative Adversarial Network (GAN) is trained on the task of

transforming a noise vector to a random realistic image that imitates a sample from

an unlabeled training set [Goodfellow et al., 2014]. A GAN trained using current

methods [Karras et al., 2018, 2019, 2020] can produce high-quality complex output

such as realistic scenes that contain buildings and trees and other objects. Such realistic

output suggests an ability to model meaningful structure in the world, even though

the GAN is trained without the detailed supervision of human-annotated labels.

When a GAN draws an image that contains a tree, we wish to understand: does a

GAN know about the tree? We do not intend to ask about the full real-world idea

of a tree, but rather whether the GAN models the visual concept of a tree as its

own class of object distinct from buildings or roads, and if it knows that trees have

their own particular appearance and propensity to appear in particular contexts in

a scene. To investigate this question, in Chapter 4 we extend network dissection to

GANs, testing the neurons of several Progressive GAN models [Karras et al., 2018]

22

1

9

18
un

its

ov
en
ch

air

wind
owdo

or

pe
rso

n

ex
ha

us
t h

oo
d

micr
ow

av
e

ref
rig

era
tor

kit
ch

en
 is

lan
d

ce
ilin

g
lam

p
sto

veflo
or

work
 su

rfa
ce

ce
ilin

g-b

wind
ow

-t

wind
ow

-b

ce
ilin

g-t
flo

or-
t

work
 su

rfa
ce

-b
flo

or-
r

kit
ch

en
 is

lan
d-r

ca
bin

et-
b

wind
ow

-l

kit
ch

en
 is

lan
d-l

work
 su

rfa
ce

-t top

ref
rig

era
tor

-t

ref
rig

era
tor

-b
flo

or-
b

sto
ve

-t

ch
air

-b

ce
ilin

g-l

kit
ch

en
 is

lan
d-t

kit
ch

en
 is

lan
d-b
sto

ve
-l

ch
air

-l

work
 su

rfa
ce

-r

wind
ow

-r
flo

or-
l

pe
rso

n-b

sto
ve

-b

ce
ilin

g-r

ca
bin

et-
t

ch
air

-t

ch
air

-r

work
 su

rfa
ce

-l

pla
sti

c

ora
ng

e
whit

e
blu

e red
gre

en
bla

ck

14
 o

bj
ec

ts

33
 p

ar
ts

1
m

at
er

ia
l

6
co

lo
rs object

part
material
color

unit 498 “oven” (object) unit 244 “chair top” (part) unit 58 “red” (color)

(a) counting all the neurons in a layer that are selective for concepts

(b) single unit activity when generating images

Figure 1-6: The emergence of object and part neurons in an unsupervised GAN trained
to mimic kitchen scenes. Although the GAN has never been exposed to the purpose of an
appliance or the use of a chair, single neurons emerge that are selective for those objects (b)
as well as a variety of other objects and parts that appear in kitchens (a).

for agreement with a range of meaningful visual concepts. Because a GAN synthesizes

its own images, we introduce use of a pretrained semantic segmentation network for

identifying neurons with human-understandable semantics (Figure 1-5).

Our measurements of neuron selectivity within several GAN models reveal object-

specific units in a GAN even in the absence of label supervision: a network trained on

outdoor church scenes has neurons for object classes such as trees, doors, and domes.

And a GAN trained on kitchen scenes has neurons for objects such as cabinets, ovens,

and chairs (Figure 1-6).

These networks have never had the experience of seeing the branches of a tree sway

in the wind, and they have no reason to know that an oven has a real-world purpose

as a distinct appliance. Yet the task of learning how to draw scenes containing those

objects has allowed the network to learn how to segregate the representation of each

object into a set of neurons. Learning to draw seems to induce an awareness of objects.

However, correlation is not causation, and without further evidence, we risk letting

our imagination go too far. The role of the neuron would be clearer if we could ask

the network to describe the effects of neurons on its own thoughts. Famously, Jerome

Lettvin imagined finding a set of ‘mother neurons’§ whose purpose was clear because,

§Mother neurons have been promoted to ‘grandmother neurons’ in the popular imagination. In
the original telling of Lettvin’s humorous allegory, the discoverer of mother neurons moved on to
future work on grandmother neurons due to better availability of research funding [Barwich, 2019].

23

(c) Location to activate
neurons

(d) Activating 20 neurons
selective for doors

(a) A scene synthesized
by Progressive GAN.

(b) Removing 20 units
selective for trees.

Figure 1-7: Conducting Lettvin’s ‘mother neuron’ experiment on a Progressive GAN trained
on outdoor church scenes. Removing 20 tree-specific units causes a scene with trees (a) to
have far fewer trees while not reducing buildings (b). Activating 20 door-specific neurons
cases a scene without a door (c) to have a door (d).

when a fabled human subject was asked to discuss his family after the neurons’ removal

from his brain, he was utterly unable to describe his own mother, even while still

talking about the red dress she wore [Barlow, 2009].

In an ideal world, we could test the causal effect of any neuron by asking the

network what it sees when we stimulate or remove the neuron (this has occasionally

been done with humans [Parvizi et al., 2012, Schalk et al., 2017]). While neither a

classifier nor a generator can talk about its own perception, a generator does present

a wonderful opportunity to conduct the experiment, because it is trained to effectively

draw what it thinks. To see what a GAN is thinking, we simply let it generate its

output image while we stimulate any set of neurons we wish.

Thus we can conduct Lettvin’s ‘mother neuron’ test almost exactly, by generating

images while removing one or more neurons that are selective for a single concept,

or conversely activating them. Figure 1-7 shows the result: the more tree-neurons we

remove, the fewer trees it draws. And activating a small set neurons for a concept

such as doors causes network to depict a new door where it previously did not exist.

By examining the details within images produced in neuron intervention exper-

iments, we can see two more ways in which the effects of neurons are fascinating.

First, we can see that the neurons’ causal impacts are highly specific. For example, in

Figure 1-7(b), observe that while trees are removed, other details in the scene such as

buildings are not reduced. In particular, parts of the building that used to be obscured

24

à

(a) (b)

Figure 1-8: GANPaint: a user interface for painting with neurons. (a) The user can select a
concept paintbrush, such as ‘dome’ then scribble on a region of the image. (b) 20 concept-
specific neurons are activated in the scribbled area, and the GAN will add the requested
object in a way that fits into the existing scene. For example, a dome shape smoothly added
into the existing building. Interactive demo at gandissect.csail.mit.edu/ganpaint.

by the trees are now visible!¶ That new complex building shapes become visible

when trees are suppressed strongly suggests that trees and buildings are processed

as separate objects by the model. The second interesting phenomenon is discussed,

measured and illustrated in Section 4.4.4: if door neurons are activated in the sky or

the grass or a location that would not make sense for a door, the model will not add a

door. The model contains a computational rule that prevents doors from being drawn

in places where a door would not make sense. In both these cases, it is apparent that

the GAN encodes rules governing relationships between concepts.

These effects lead to visually satisfying results, and the method enables us to

create an application, GANPaint, that presents the user with a ‘semantic paintbrush’

that activates or deactivates sets of neurons specific to a visual concept that they can

select. The user can paint trees or doors or other objects in a synthesized scene. With

each brushstroke, small sets of concept-specific neurons are activated, and as a result

the GAN alters the scene in a realistic way (Figure 1-8).

Our findings from interventions of the neurons of a GAN lead us to two further

¶When trees vanish while buildings remain, it is reminiscent of Lettvin’s idea of the mother’s red
dress remaining. It is especially surprising here because our GAN has just been trained on the task of
matching visible pixels; yet it has apparently learned to model parts of objects that are not visible,
such as the parts of the buildings that had been obscured by trees.

25

gandissect.csail.mit.edu/ganpaint

questions concerning the limitations and rules encoded within a network:

1. How can we quantify and visualize concepts that a GAN does not draw?

2. Is it possible to understand how rules governing relationships between concepts

are represented within a network?

Investigating these two questions are the subjects of Chapter 5 and Chapter 6.

1.3 Seeing what a GAN cannot generate

If the neurons of a network tell us what visual concepts a network contains, then how

can we discover what visual concepts a network fails to contain? Understanding the

omissions of a network requires a new kind of test, because it is difficult to explain an

omission by giving just one example of an image.

In Chapter 5, we devise two types of pairwise comparisons to understand the omis-

sion of a GAN: first, we compare distributions of images, contrasting the distribution

of outputs of a GAN with the GAN’s training distribution (Figure 1-9(a)). Second, we

compare instances of images, pairing each real training images with a GAN-generated

image that is optimized to be as similar as possible to the real image (Figure 1-9(b,c)).

Surprisingly, we find that the distributions concentrate many of their differences

on a few object classes. For example, the training data for a GAN model of church

buildings contains many people in the images, but the output of the GAN model

contains very few objects that resemble people. The same systematic omissions can be

observed on other classes of complex objects, such as vehicles and text, and quantified

as shown in Figure 1-9(a).

To visualize instances of the omissions, we develop a network inversion procedure

that can accurately invert layers of a generator network 𝐺 by calculating the noise that

would produce a generated image 𝑥, that is, identifying the 𝑧 for which 𝐺(𝑧) = 𝑥, if

there is one (see Figure 5-6). By applying this inversion on training images that cannot

be synthesized by the GAN, we can create pairs of images that visualize specific cases

in which the GAN omits identified object classes, as shown in Figure 1-9(c).

26

(b) real image (c) generated image(a) comparing object statistics in generated vs training distributions

C
hu

rc
h

P
ro

ge
ss

iv
e

G
A

N

Figure 1-9: Two ways to understand GAN omissions. (a) By comparing statistics of human-
understandable visual concepts in generated images to those of training images, we can see
that the GAN concentrates omissions in a few visually complicated classes such as people,
vehicles, and signs with text. (b) An example of a typical training set image, containing a
person. (c) By inverting the GAN and drawing the image reconstruction, we can directly
see an example of a GAN omitting people from a generated image; this matches the sharp
dropout of the person object class seen in the statistics.

1.4 Rewriting rules in a generative model

While the data processsed by a network are represented by the activations of its

neurons, the rules governing the data processing must be represented by the weights of

the connections between neurons. Thus understanding the rules of a network requires

us to understand its weights.

In Chapter 6, we propose a new problem setting that is equivalent to understanding

how the rules of a model are encoded in the weights. We ask, for any generalized rule

within a model, is there a minimal change in the weights that will cause the model to

change that one rule without changing other unrelated behavior in the network?

For example, a network could contain a rule that specifies “Towers have pointy

roofs, not leafy branches.” (Figure 1-10) We ask, which weights need to change in order

to change that rule? For example, can we change the rule so that tops of buildings are

instead required to grow trees and not peaked roofs? We are not interested in just

changing how one image is computed: we wish to change the rule in general, so that

all similar buildings sprout trees instead of rooftops.

To solve this problem, we hypothesize that the model memorizes rules in its layers

27

G(z;W0)

G(z;W1)

(a) Original rule: towers have pointed roofs, not trees on top.

(b) Modified rule: towers have trees on top, not pointed roofs.

Figure 1-10: The goal of rewriting a generative model. (a) A pretrained model generates
images that follow systematic rules learned from the data, for example, towers are topped
by pointy rooftops. (b) The goal is to make a minimal change in the weights of a model to
change one systematic rule without interfering with other aspects of the model.

Input dim

O
ut

pu
t

di
m

Weights

W vk
multiply

Key à Value
“Towers” k1 à v1 “Pointy”

“Trees” k2 à v2 “Leafy”

Figure 1-11: A single-layer associative memory model for the purpose of a layer in a deep
network. If a network memorizes rules by storing key-value associations in a layer, then we
should be able to change a rule by rewriting one such memorized association.

by treating each layer as a lookup table that maps neurons for a meaningful input

context, such as ‘top of a tower,’ to neurons for a meaningful output command such

as ‘draw a pointy rooftoop’ (Figure 1-11). To understand how such a table would be

organized, we adopt a simple mathematical model of single-layer neural networks.‖

An analysis of this model reveals that a single rule should correspond to a rank-one

subspace of the weights of a layer.

To test this hypothesis, we build a user interface that would enables a person to

edit a rank-one subspace of weights a GAN by highlighting examples of a rule to

‖The optimal linear associative model was first proposed by Kohonen [1972] and Anderson [1972],
where they used it to reason about the capabilities and organization of a single-layer neural network.

28

(a) Copy (c) Context(b) Paste

(d) Output of new unseen images (e)

Synthesized by rewritten model

User
Input

Model
Output

From original
unchanged model

Figure 1-12: Human interaction for rewriting a generative model. A person selects a behavior
such as (a) a furry mustache, and then selects an example of a rule that should be changed
to use the new behavior, such as (b) the eyebrow of a child. Then to demonstrate the desired
generalization the user selects (c) a few additional context examples. After rewriting the rule,
(d) new unseen examples also obey the new rule, and the rule has generalized according to
the examples, for example (e) altering both eyebrows instead of just one. Yet the rule change
is also specific, minimizing changes outside the eyebrow change that was desired. Interactive
demos at rewriting.csail.mit.edu.

change. And we demonstrate and measure efficacy at changing some individual rules,

for example altering the appearance of eyebrows on children, or causing trees to sprout

out of towers (Figure 1-12).

Although our editing method can only change some specific kinds of rules encoded

by a large model, the results are interesting because they demonstrate that, by cracking

open a model and understanding and manipulating its internal structure, it is feasible

to directly create a model that exhibits behavior that a person designed, that does

not need to be trained to mimic any new data set.

In other words, by understanding the internal language of a deep network, we

have found that we can enable a person to teach a network to do something new that

merges capabilities that the network has learned through machine learning, with new

rules that come not from data, but from the imagination of the human user.

29

rewriting.csail.mit.edu

1.5 Summary

We start this journey by asking: Do deep neural networks contain concepts?

Following this inquiry within state-of-the-art models in computer vision leads us to

insights about the computational structure of those deep networks that enable several

new applications, including GANPaint semantic manipulation of objects in an image;

visualization of objects that are missing from a generative model; and quick, selective

editing of generalizable rules within a fully trained StyleGAN network.

The results from our investigations demonstrate that, although we train deep neural

networks as black boxes, we are not compelled to use them that way. They contain

computational structure that can be decomposed, understood, and manipulated.

The simple methods we develop in this dissertation presage a scientific approach to

machine learning in which we will not be content to allow a model to learn freely from

data, but where machine learning becomes just one step in a larger model-building

process. They anticipate a future in which it will become routine for model internals

to be analyzed, understood, manipulated, decomposed, and recombined to create new

systems that solve human needs that cannot be expressed by imitation of data alone.

Bibliography

James A Anderson. A simple neural network generating an interactive memory.

Mathematical biosciences, 14(3-4):197–220, 1972.

Bruno B Averbeck, Peter E Latham, and Alexandre Pouget. Neural correlations,

population coding and computation. Nature reviews neuroscience, 7(5):358–366,

2006.

H Barlow. Grandmother cells, symmetry, and invariance: how the term arose and

what the facts suggest. The cognitive neurosciences, pages 309–320, 2009.

Horace B Barlow. Single units and sensation: a neuron doctrine for perceptual

psychology? Perception, 1(4):371–394, 1972.

30

Ann-Sophie Barwich. The value of failure in science: the story of grandmother cells in

neuroscience. Frontiers in neuroscience, 13:1121, 2019.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio

Torralba. Understanding the role of individual units in a deep neural network. PNAS,

117(48):30071–30078, 2020.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.

James V Haxby, M Ida Gobbini, Maura L Furey, Alumit Ishai, Jennifer L Schouten,

and Pietro Pietrini. Distributed and overlapping representations of faces and objects

in ventral temporal cortex. Science, 293(5539):2425–2430, 2001.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding

recurrent networks. In ICLR, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo

Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020.

Teuvo Kohonen. Correlation matrix memories. IEEE transactions on computers, 100

(4):353–359, 1972.

Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and Walter H Pitts.

What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11):1940–1951,

1959.

31

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In CVPR, 2015.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the

importance of single directions for generalization. In ICLR, 2018.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going

deeper into neural networks. 2015.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. In CVPR, pages 427–436,

2015.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.

Synthesizing the preferred inputs for neurons in neural networks via deep generator

networks. NeurIPS, 2016.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug

& play generative networks: Conditional iterative generation of images in latent

space. In CVPR, pages 4467–4477, 2017.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization.

Distill, 2(11):e7, 2017.

Josef Parvizi, Corentin Jacques, Brett L Foster, Nathan Withoft, Vinitha Rangarajan,

Kevin S Weiner, and Kalanit Grill-Spector. Electrical stimulation of human fusiform

face-selective regions distorts face perception. Journal of Neuroscience, 32(43):

14915–14920, 2012.

David C Plaut and James L McClelland. Locating object knowledge in the brain:

Comment on bowers’s (2009) attempt to revive the grandmother cell hypothesis.

Psychological Review, 117(1):284–288, 2010.

Rodrigo Quian Quiroga. Concept cells: the building blocks of declarative memory

functions. Nature Reviews Neuroscience, 13(8):587, 2012.

32

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and

discovering sentiment. arXiv preprint arXiv:1704.01444, 2017.

Gerwin Schalk, Christoph Kapeller, Christoph Guger, Hiroshi Ogawa, Satoru Hi-

roshima, Rosa Lafer-Sousa, Zeynep M Saygin, Kyousuke Kamada, and Nancy

Kanwisher. Facephenes and rainbows: Causal evidence for functional and anatomi-

cal specificity of face and color processing in the human brain. Proceedings of the

National Academy of Sciences, 114(46):12285–12290, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR,

2014.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Object detectors emerge in deep scene cnns. In ICLR, 2015.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance

of individual units in cnns via ablation. arXiv preprint arXiv:1806.02891, 2018.

33

34

Chapter 2

Literature Review

At the heart of both the success and the enigma of modern computer vision is our

field’s reliance on machine learning to automatically learn programs from data. As long

as we can calculate a robust numerical objective that measures how well a program

solves a task on a set of examples, computer vision practitioners have found that

we can perform a task without fully understanding how it is done. We train deep

convolutional neural networks [LeCun et al., 1995] by optimizing our objectives on

large data sets, and the learned weights take care of the details. The approach has

proven so effective that machine learning with convolutional networks has become

the central tool for solving almost every problem in computer vision including image

classification [Krizhevsky et al., 2012, Szegedy et al., 2015, He et al., 2016, Tan and

Le, 2019], object detection [Girshick, 2015, Ren et al., 2015, Redmon et al., 2016],

scene segmentation [Long et al., 2015, Badrinarayanan et al., 2017, Zhou et al., 2017a,

Chen et al., 2018b, Kirillov et al., 2019], captioning [Vinyals et al., 2015, Xu et al.,

2015, Rennie et al., 2017, Yao et al., 2018, Lu et al., 2019], 3D perception [Eigen et al.,

2014, Godard et al., 2017, Zhou et al., 2017b, Mahjourian et al., 2018] and image

synthesis [Goodfellow et al., 2014, Radford et al., 2016, Arjovsky et al., 2017, Isola

et al., 2017, Zhu et al., 2017, van den Oord et al., 2017, Brock et al., 2019, Karras

et al., 2018, 2019, 2020].

The success of machine learning across computer vision poses a new problem for

computer vision scientists, because now, constructing a working program no longer

35

suffices as proof that we understand the solution. After creating a network that

performs well on a prescribed task, we can still find ourselves utterly unable to

explain its limitations, such as why the system will be fooled by tiny changes in the

input [Szegedy et al., 2014, Papernot et al., 2016, Madry et al., 2018]. Even more

astoundingly, we can be just as unable to anticipate the capabilities of our network,

such as how it can represent solutions to problems that seem more specific and complex

than the original training task [Yosinski et al., 2014, Chen et al., 2020, He et al., 2020,

Grill et al., 2020].

Thus if we wish to fully understand a computer vision task, we are now faced with

a second puzzle after making a network work: how to explain, understand, and control

the computations that our trained network has learned.

While the network dissection approach described in this thesis is one way to under-

stand a neural network, it is one among many of approaches that have been developed,

which we survey here. We will examine both recent methods for understanding artifi-

cial neural networks in computer vision, and classical experiments investigating the

structure of biological vision networks.

2.1 Other ways to understand a deep network

As computational forms, neural networks are powerful because they are a family of

universal function approximators [Hornik et al., 1989], but this flexibility also makes

deep networks difficult to understand. For example, a VGG16 classifier [Simonyan and

Zisserman, 2015] is a nonlinear function computed by performing 19.6 billion floating

point operations using 138 million learned parameters.

2.1.1 Surrogate models and explanation models

One response to the complexity is to model the network with a simpler calculation. For

example, in the neighborhood of a single image, the local behavior of a large network

like VGG16 can be approximated by a simple linear model [Ribeiro et al., 2016] which

is easier to analyze. Nonlinear surrogate models can also provide insight: a network can

36

be approximated as sets of examples in a nearest-neighbor model [Caruana et al., 1999,

Kim et al., 2014]. Or its behavior can be modeled by a decision tree [Féraud and Clérot,

2002, Frosst and Hinton, 2017, Zhang et al., 2019] or a finite state machine [Koul et al.,

2019]. Once a surrogate model is created, instead of explaining the original complex

neural network, we can explain behavior by examining the activity of the surrogate.

Another modeling approach seeks out explanations by recruiting the help of a

powerful explanation network. Here a second model is again used that is designed to be

more understandable to humans than the original, but rather than choosing a simpler

model, one uses a larger powerful model that is trained to generate human-readable

explanatory text [Hendricks et al., 2016], or images that show where the relevant

evidence is [Park et al., 2018]. Such explanation networks can be trained on a data set

of human-created explanations so that the justifications are similar to the explanations

that a human would give.

A supplementary model can also be used to understand information within the

network by decoding its representations. A common approach is to decode specific

variables from a layer by training a linear model [Alain and Bengio, 2017, Kim

et al., 2017, Belinkov et al., 2017]. A decoder can also be trained to reconstruct

an input image that yields the same representation [Dosovitskiy and Brox, 2016,

Mahendran and Vedaldi, 2015, Vondrick et al., 2013, Weinzaepfel et al., 2011], to

visualize model perception. A decoding model can also be trained to identify invariances

and equivariances in a layer [Lenc and Vedaldi, 2015].

Training a second model to provide insights about the behavior of an opaque

neural network can uncover insights such as which input variables seem to be the

most important for a particular decision [Ribeiro et al., 2016], or whether the model

contains sensitive latent information such as legally protected class membership [Kim

et al., 2017]. However, one disadvantage of introducing a second model is that the

limitations, biases, and structure of the second model may not be identical to those of

the original network. For example, a variable that plays a causal role in a surrogate

model may not play a causal role in the original network’s computations [Goyal et al.,

2019]. Explanations of a second model may also miss structural insights about the

37

Figure 2-1: Example of a CAM heatmap, from Zhou et al. [2015], reproduced with permission
of the author. By visualizing gradients of predictions of different classes weighted by feature
activations, the CAM heatmap visualization shows the model attending to different parts of
the image for different classes. Such single-image visualizations hint at the underlying neuron
selectivity, which our methods aim to quantify directly.

original computations. If the original network has some simple underlying organization,

the chance to understand that structure may be lost when translating to another kind

of model that operates very differently.

In this thesis, instead of creating surrogate models or explanation models, we will

focus on understanding the computations of the primary network directly.

2.1.2 Salience methods

One fundamental way to understand a network directly is to ask how its outputs vary

as its inputs are changed. For example, Zeiler and Fergus [2014] proposed testing the

output changes of an image classifier in response to erasing a small patch of the input

image. By scanning the erased patch across the image and identifying locations which

cause the network to change its prediction most, it is possible to identify individual

parts of the input that are most salient to the computed output, even if we do not

understand the detailed computations that lead to that specific sensitivity.

Zeiler’s simple patch deletion procedure does not test every possible perturbation

of the input, and a number of other saliency mapping methods have been developed for

identifying other potentially important input sensitivities. One approach is to estimate

input pixel sensitivity by directly computing gradients through the network [Baehrens

et al., 2010, Erhan et al., 2009, Simonyan et al., 2014]. The simple gradient approach

can produce noisy visualizations, but it has been found that more understandable

visualizations can be derived from other gradient-based quantities such as the gradient

of positive terms [Bach et al., 2015], the gradient integrated over a path [Sundararajan

38

et al., 2017], or the gradient averaged over perturbations of the input [Smilkov et al.,

2017]. It can be particularly effective to create class activation maps which visualize

feature gradients weighted according to feature activation strengths [Zhou et al., 2014,

Selvaraju et al., 2017] (Figure 2-1). A different approach is to improve Zeiler’s masking

method by probing deletions on many parts of the input simultaneously using random

masks [Petsiuk et al., 2018], or by devising a loss for explanations and optimizing

masks according to that loss [Fong and Vedaldi, 2017]. Or one can appeal to game

theory and score the Shapley value of each pixel [Roth, 1988, Lundberg and Lee, 2017,

Sundararajan and Najmi, 2020, Chen et al., 2018a], which is its marginal contribution

to the output when considered over all combinations of other pixels.

The multiplicity of reasonable salience methods leads to the question, how can

we know when a salience method reveals something meaningful? One can benchmark

salience methods by asking if humans are able to distinguish stronger or weaker

models by looking at visualizations [Selvaraju et al., 2017], or by conducting lower-

level evaluations, for example, by scoring a visualization against a “pointing game,”

that measures how well salient regions match human-labeled segmentations of relevant

objects in a scene [Zhang et al., 2018]. Or one can score a visualization method against

a “deletion game,” measuring the impact on deleting masked regions on the output of

the network [Samek et al., 2016, Fong and Vedaldi, 2017] or on the the ability of the

network to learn from images with deletions [Hooker et al., 2018]. It has been observed

that a good visualization should change when network parameters are scrambled to

destroy performance [Adebayo et al., 2018], since a useful visualization should help

distinguish strong models from weak ones.

Salience methods have revealed that convolutional neural networks attend to

interesting parts of an image that are often suggestive of either insights or mistakes.

However, salience methods give us a picture of where a network is looking at without

directly answering the question why the network is looking there.

To gain insight into “why,” we ask: how do the internal computations of the network

work? Since the computations are too complex to consider as a whole, is it natural to

decompose a network into neurons, and study properties of specific units.

39

Figure 2-2: Synthesized images for feature visualization, from Olah et al. [2017], licensed
under CC-BY 4.0. These visualizations are obtained by optimizing the pixels to maximize
individual unit activations, while applying several regularization techniques such as jitter and
whitening, to ensure that the images reveal patterns clearly. Such single-image visualizations
are superb tools for understanding units that are selective for a single visual appearance, but
do not provide full insight on the range of dissimilar images which a unit may detect.

2.1.3 Unit and latent vector methods

In computer vision, it has long been known that specialized neurons acting as oriented-

edge Gabor filters can be learned at the early layers of a neural network [Daugman,

1988, Zeiler et al., 2010], resembling the response of edge detection neurons in biological

vision [Hubel and Wiesel, 1962]. After the the successful use of deep convolutional

networks on very large datasets, it was also noticed that individual units of large

networks seem to show sensitivity to higher-level patterns and shapes that are much

more complicated than oriented edges [Zeiler and Fergus, 2014]. This has inspired the

development of several methods for visualizing and understanding individual units

with a deep network. The work in this thesis is part of that tradition.

One natural approach for understanding a unit is to visualize images that cause it to

activate. This can be done by simply identifying a few activation-maximizing samples

from a data set of real images [Zeiler and Fergus, 2014]. In our work, when we visualize

units we adopt this simple approach, though we identify regions that stimulate a

neuron, rather than only whole images. Another approach is to synthesize an image that

maximizes the response of the unit. This can be done by direct backpropagation [Erhan

et al., 2009, Simonyan et al., 2014, Zeiler and Fergus, 2014], optimization using a

generative prior [Nguyen et al., 2016, 2017], or other regularization such as jitter [Olah

40

et al., 2017, Mordvintsev et al., 2015] (Figure 2-2). Synthesized images can be used to

visualize entire feature maps and combinations of units [Olah et al., 2018, 2020].

One limitation of unit-visualization synthesis methods is that a unit’s response

may not be well-represented by a single visual template: a unit may respond to sets

of visually dissimilar images. Nguyen et al. [2017] has advocated synthesizing unit

images with a method that generates many images, and recently, Goh et al. [2021]

demonstrated a method for synthesizing multiple dissimilar images that is able to

reveal neurons respond to both printed text as well as visual views of the same abstract

concept within the CLIP [Radford et al., 2021] network. One of the goals of our network

dissection approach is to address and measure such visually diverse detection. By

characterizing units according to their behavior on a distribution of many images, our

method allows semantically coherent responses to visually dissimilar appearances to

be identified and quantified.

When visualizing and understanding generative model feature vectors, Radford

et al. [2016] observed that a GAN latent space provides vector arithmetic for visual

semantics, and this has sparked development of methods for understanding, exploring,

and finding useful vector latent directions in GAN feature space. Latent feature

vectors can be found using classifiers and other learning methods [Shen et al., 2020,

Goetschalckx et al., 2019, Jahanian et al., 2020, Härkönen et al., 2020]. Our work

differs from those methods because we focus on GAN units in interior layers, which

allows us to analyze and manipulate how a GAN decomposes a scene into smaller

objects and parts. Recently, exciting work analyzing individual interior-layer units

in StyleGAN [Wu et al., 2021] has extended our methods and discovered remarkably

disentangled individual units in the style modulation units of that network.

Our review of model explanation, unit visualization and latent vector methods is

not exhaustive, and in subsequent chapters, further work is reviewed that is relevant

to the experiments in each chapter. We also note that the study of individual units

predates computer science; our work is motivated by the history of single-unit studies

in neuroscience, which we briefly discuss now.

41

2.2 Inspiration from neuroscience

When studying neurons, we draw inspiration from a rich history of single-neuron

experiments in neuroscience. But we must also point out that the question about the

fundamental role of a neuron in biological brains is far from settled.

2.2.1 The distributed code model

On the role of neurons, neuroscience is divided into two schools of thought. The

modern prevailing view is that large populations of neurons must work together to

form a distributed code, and that elements of perception are represented in complex

ways that cannot be distilled down to any single neuron. Advocates of this view point

out that even when neurons or regions or neurons respond most strongly to one type

of stimulus, they also contain information about many other types of stimuli [Haxby

et al., 2001]. In this view, it can be misleading to say, for example, that a neuron

detects a face on the basis of its strong selective activity for faces, because diffuse

signals that appear only as barely detectable noise across individual neurons can

also make a decisive contribution to perception when combinations of neurons are

considered in the aggregate [Averbeck et al., 2006].∗ It is believed that generalization

of perception to complex concepts such as specific instances of objects with many

attributes, demands a flexible coding scheme [Plaut and McClelland, 2010].

If perception is mediated by such a distributed code, the question ‘where in the

brain is something perceived?’ cannot be answered by any small group of neuron cells.

Perception must be understood as an abstract state of the population of neurons as a

whole, with no need for a special neuron to perceive any one concept.

One of the greatest successes of the distributed coding model is the design of

artificial deep neural networks: when we train a network, we allow every neuron to

read signals from every neuron at the previous layer, allowing for the representation

∗The typical argument in favor of the distributed code view is a decoding argument, that many
aspects of perception can be decoded from what might appear as mere noise in individual neural
signals. Yet the presence such information does not directly prove that sensation of perception is
caused by those signals. Such correlations are suggestive, but whether they cause the sensation of
perception is not fully settled.

42

of a dense distributed code where a whole layer of neurons works together.

2.2.2 The neuron doctrine

The second school of thought is the neuron doctrine of perception. This view argues

that no invisible large-scale population property is necessary to explain the sensation

of perception: every element of human perception corresponds directly to the activity

of a few neurons [Barlow, 1972].† This point of view was motivated by results from

single-neuron experiments that revealed specific sensitivities, physical organization,

and functional hierarchy of individual neurons in the nervous system and parts of

the brain such as the visual cortex [Adrian and Matthews, 1927, Lettvin et al., 1959,

Hubel and Wiesel, 1962, Gross et al., 1972]. These experiments revealed neurons with

highly specific responses to inputs that are increasingly complex, from oriented edges

to shapes of objects such as hands. The neuron doctrine extrapolated from such shape

sensitivity to the hypothesis that there must be neurons elsewhere in the brain for all

elements of perception.

Few neuroscientists would defend the simplistic notion that one neuron purely

corresponds to one idea. However Jerome Lettvin’s parable of an imaginary set of

“Grandmother cells”‡ has captured the public imagination and sparked much research

and debate about the nature of high-level perception [Barlow, 2009]. Despite the

fact that “No one wants to be accused of believing in grandmother cells” [Connor,

2005], modern experimental results have continued to reveal an unexpected degree

of both selectivity and invariance in small sets of neurons for classes of increasingly

complex inputs, coming closer to Lettvin’s allegorical grandmother cells [Bowers, 2009].

Causality has been demonstrated, for example Newsome et al. [1989] showed that

small sets of perceptual cells in monkeys could be stimulated to cause the monkeys

to react as if specific directional motions had been seen. Higher-level concepts have

†One way to understand the argument between the neuron-doctrine and population-code perspec-
tives is as a difference opinion on how best to apply Occam’s razor. Which is the more unnecessary
concept, a physical decoding neuron, or an emergent sensation of perception?

‡Actually “mother cells” in the original telling, whose removal would cause you to be unable to
perceive your own mother.

43

Figure 2-3: Selectivity and invariance of one neuron for Halle Berry, from Quiroga et al.
[2005], reprinted with the permission of Macmillan Publishers. These single-neuron spike
measurements from a human subject are shown together with representative visual stimuli.
Notice that the single neuron selectively images of Halle Berry and not other people or scenes,
but it also responds to the printed text ‘Halle Berry’, a drawing of the actress, as well as
pictures of Catwoman, a role that had recently been played by the actress.

been found, for example, Kanwisher et al. [1997] localized a region of face-specific

neurons in the FFA of the cortex; when this region is stimulated, a subject will report

hallucinating faces on plain objects, and changing identities of seen faces [Schalk et al.,

2017]. And Quiroga et al. [2005] has found individual neurons in the medial temporal

lobe in which single-neuron activity was specific to an individual person, including one

neuron was only sensitive to the actress Halle Berry, responding to a variety of photos

of that actress as well as a drawing, the printed text ‘Halle Berry’, as well as depictions

of the fictional character Catwoman that she had recently played (Figure 2-3).

44

2.2.3 Sparse coding and artificial neural networks

It is reasonable to ask whether the neuron doctrine should be fully discarded in the

face of such strikingly specific neurons. There is some middle ground which may

come closest to the full story. The distributed and neuron-doctrine views can be

reconciled by the proposal that a neural network uses a sparse code in which a minimal

number of neurons fire to represent any element of perception: sparse coding has

been observed in some studies that have exhaustively examined small systems of

neurons [Olshausen and Field, 1996, Hung et al., 2005, Honegger et al., 2011]. Even if

individual neurons are not singularly responsible for perception, in a sparse coding

scheme, the response of individual neurons will provide insight about the specificity,

invariances, and symmetries of the code [Barlow, 2009].

With artificial neural networks we are now in the odd position of being able to

perfectly calculate the operation of a network while still lacking an understanding

of how the network works. Therefore, to start the process of understanding these

systems, we will begin by retracing the steps of the first neuroscientists: we examine

the response of individual neurons.

Bibliography

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and

Been Kim. Sanity checks for saliency maps. NeurIPS, 31, 2018.

Edgar Douglas Adrian and Rachel Matthews. The action of light on the eye: Part i.

the discharge of impulses in the optic nerve and its relation to the electric changes

in the retina. The Journal of Physiology, 63(4):378–414, 1927.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear

classifier probes. In ICLR Workshop, 2017.

Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-

sarial networks. In ICML, 2017.

45

Bruno B Averbeck, Peter E Latham, and Alexandre Pouget. Neural correlations,

population coding and computation. Nature reviews neuroscience, 7(5):358–366,

2006.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-

Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PloS one, 10(7), 2015.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation. 39(12):2481–2495,

2017.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja

Hansen, and Klaus-Robert Müller. How to explain individual classification decisions.

JMLR, 11:1803–1831, 2010.

H Barlow. Grandmother cells, symmetry, and invariance: how the term arose and

what the facts suggest. The cognitive neurosciences, pages 309–320, 2009.

Horace B Barlow. Single units and sensation: a neuron doctrine for perceptual

psychology? Perception, 1(4):371–394, 1972.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What

do neural machine translation models learn about morphology? In Proceedings of

the 55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 861–872, 2017.

Jeffrey S Bowers. On the biological plausibility of grandmother cells: implications for

neural network theories in psychology and neuroscience. Psychological review, 116

(1):220, 2009.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high

fidelity natural image synthesis. In ICLR, 2019.

46

Rich Caruana, Hooshang Kangarloo, John David Dionisio, Usha Sinha, and David

Johnson. Case-based explanation of non-case-based learning methods. In Proceedings

of the AMIA Symposium, page 212. American Medical Informatics Association, 1999.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley

and c-shapley: Efficient model interpretation for structured data. arXiv preprint

arXiv:1808.02610, 2018a.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In ECCV, pages 801–818, 2018b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In ICML. PMLR, 2020.

Charles E Connor. Friends and grandmothers. Nature, 435(7045):1036–1037, 2005.

John G Daugman. Complete discrete 2-d gabor transforms by neural networks for

image analysis and compression. IEEE Transactions on acoustics, speech, and signal

processing, 36(7):1169–1179, 1988.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolu-

tional networks. In CVPR, 2016.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single

image using a multi-scale deep network. Advances in Neural Information Processing

Systems, 27:2366–2374, 2014.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

Raphael Féraud and Fabrice Clérot. A methodology to explain neural network

classification. Neural networks, 15(2):237–246, 2002.

Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by

meaningful perturbation. In ICCV, pages 3429–3437, 2017.

47

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree.

2071, 2017. URL http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf.

Ross Girshick. Fast r-cnn. In CVPR, pages 1440–1448, 2015.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular

depth estimation with left-right consistency. In CVPR, pages 270–279, 2017.

Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze: Toward

visual definitions of cognitive image properties. In ICCV, 2019.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig

Schubert, Alec Radford, and Chris Olah. Multimodal neurons in artificial neural

networks. Distill, 6(3):e30, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.

Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal

concept effect (CACE). arXiv preprint arXiv:1907.07165, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Pires, Zhaohan Guo, Mohammad Azar,

et al. Bootstrap your own latent: A new approach to self-supervised learning. In

NeurIPS, 2020.

Charles G Gross, CE de Rocha-Miranda, and DB Bender. Visual properties of neurons

in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35(1):96–111,

1972.

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace:

Discovering interpretable gan controls. arXiv preprint arXiv:2004.02546, 2020.

48

http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf

James V Haxby, M Ida Gobbini, Maura L Furey, Alumit Ishai, Jennifer L Schouten,

and Pietro Pietrini. Distributed and overlapping representations of faces and objects

in ventral temporal cortex. Science, 293(5539):2425–2430, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In CVPR, 2020.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,

and Trevor Darrell. Generating visual explanations. In ECCV, 2016.

Kyle S Honegger, Robert AA Campbell, and Glenn C Turner. Cellular-resolution

population imaging reveals robust sparse coding in the drosophila mushroom body.

Journal of neuroscience, 31(33):11772–11785, 2011.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for

interpretability methods in deep neural networks. arXiv preprint arXiv:1806.10758,

2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):

106–154, 1962.

Chou P Hung, Gabriel Kreiman, Tomaso Poggio, and James J DiCarlo. Fast readout of

object identity from macaque inferior temporal cortex. Science, 310(5749):863–866,

2005.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In CVPR, 2017.

49

Ali Jahanian, Lucy Chai, and Phillip Isola. On the "steerability" of generative

adversarial networks. In ICLR, 2020.

Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform face area:

a module in human extrastriate cortex specialized for face perception. Journal of

neuroscience, 17(11):4302–4311, 1997.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo

Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020.

Been Kim, Cynthia Rudin, and Julie A Shah. The bayesian case model: A generative

approach for case-based reasoning and prototype classification. In NeurIPS, 2014.

Been Kim, Justin Gilmer, Fernanda Viegas, Ulfar Erlingsson, and Martin Wattenberg.

Tcav: Relative concept importance testing with linear concept activation vectors.

arXiv preprint arXiv:1711.11279, 2017.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár.

Panoptic segmentation. In CVPR, 2019.

Anurag Koul, Alan Fern, and Sam Greydanus. Learning finite state representations

of recurrent policy networks. In ICLR, 2019. URL https://openreview.net/for

um?id=S1gOpsCctm.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In NeurIPS, pages 1097–1105, 2012.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

50

https://openreview.net/forum?id=S1gOpsCctm
https://openreview.net/forum?id=S1gOpsCctm

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring

their equivariance and equivalence. In CVPR, 2015.

Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and Walter H Pitts.

What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11):1940–1951,

1959.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In CVPR, 2015.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: pretraining task-

agnostic visiolinguistic representations for vision-and-language tasks. In NeurIPS,

pages 13–23, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

In NeurIPS, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In

ICLR, 2018.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In CVPR, 2015.

Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised learning of

depth and ego-motion from monocular video using 3d geometric constraints. In

CVPR, 2018.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going

deeper into neural networks. 2015.

William T Newsome, Kenneth H Britten, and J Anthony Movshon. Neuronal correlates

of a perceptual decision. Nature, 341(6237):52–54, 1989.

51

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.

Synthesizing the preferred inputs for neurons in neural networks via deep generator

networks. NeurIPS, 2016.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug

& play generative networks: Conditional iterative generation of images in latent

space. In CVPR, pages 4467–4477, 2017.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization.

Distill, 2(11):e7, 2017.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather-

ine Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill,

3(3):e10, 2018.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and

Shan Carter. Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381(6583):607–609,

1996.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.

IEEE, 2016.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele,

Trevor Darrell, and Marcus Rohrbach. Multimodal explanations: Justifying decisions

and pointing to the evidence. In CVPR, pages 8779–8788, 2018.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for

explanation of black-box models. In BMVC, 2018.

52

David C Plaut and James L McClelland. Locating object knowledge in the brain:

Comment on bowers’s (2009) attempt to revive the grandmother cell hypothesis.

Psychological Review, 117(1):284–288, 2010.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried.

Invariant visual representation by single neurons in the human brain. Nature, 435

(7045):1102–1107, 2005.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. In ICLR, 2016.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language supervision. arXiv preprint

arXiv:2103.00020, 2021.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In CVPR, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In NeurIPS, pages 91–99,

2015.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel.

Self-critical sequence training for image captioning. In CVPR, pages 7008–7024,

2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:

Explaining the predictions of any classifier. In SIGKDD, pages 1135–1144. ACM,

2016.

Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge

University Press, 1988.

53

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and

Klaus-Robert Müller. Evaluating the visualization of what a deep neural network

has learned. IEEE transactions on neural networks and learning systems, 28(11):

2660–2673, 2016.

Gerwin Schalk, Christoph Kapeller, Christoph Guger, Hiroshi Ogawa, Satoru Hi-

roshima, Rosa Lafer-Sousa, Zeynep M Saygin, Kyousuke Kamada, and Nancy

Kanwisher. Facephenes and rainbows: Causal evidence for functional and anatomi-

cal specificity of face and color processing in the human brain. Proceedings of the

National Academy of Sciences, 114(46):12285–12290, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In ICCV, 2017.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of

gans for semantic face editing. In CVPR, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In ICLR, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. In ICLR

Workshop, 2014.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.

Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825,

2017.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explana-

tion. In ICML, pages 9269–9278. PMLR, 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In PMLR, 2017.

54

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR,

2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In CVPR, 2015.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–6114.

PMLR, 2019.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete repre-

sentation learning. In NeurIPS, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell:

A neural image caption generator. In CVPR, pages 3156–3164, 2015.

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, and Antonio Torralba. Hoggles:

Visualizing object detection features. In CVPR, 2013.

Philippe Weinzaepfel, Hervé Jégou, and Patrick Pérez. Reconstructing an image from

its local descriptors. In CVPR, pages 337–344, 2011.

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled

controls for stylegan image generation. In CVPR, 2021.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML, pages 2048–2057. PMLR,

2015.

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for

image captioning. In ECCV, 2018.

55

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? NeurIPS, 2014.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional

networks. In 2010 IEEE Computer Society Conference on computer vision and

pattern recognition, pages 2528–2535. IEEE, 2010.

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and

Stan Sclaroff. Top-down neural attention by excitation backprop. IJCV, 126(10):

1084–1102, 2018.

Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via

decision trees. In CVPR, 2019.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

Learning deep features for scene recognition using places database. In NeurIPS,

2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Object detectors emerge in deep scene cnns. In ICLR, 2015.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. Scene parsing through ade20k dataset. In CVPR, 2017a.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised

learning of depth and ego-motion from video. In CVPR, 2017b.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In ICCV, 2017.

56

Chapter 3

Network Dissection
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva,
Antonio Torralba. CVPR 2017.

3.1 Introduction

Observations of hidden units in large deep neural networks have revealed that human-

interpretable concepts sometimes emerge as individual latent variables within those

networks: for example, object detector units emerge within networks trained to

recognize places [Zhou et al., 2015]; part detectors emerge in object classifiers [Gonzalez-

Garcia et al., 2016]; and object detectors emerge in generative video networks [Vondrick

et al., 2016] (Fig. 3-1). This internal structure has appeared in situations where the

networks are not constrained to decompose problems in any interpretable way.

The emergence of interpretable structure suggests that deep networks may be

lamps in places net wheels in object net people in video net

Figure 3-1: Examples of image regions that maximize units in several networks. Unit 13
in Zhou et al. [2015] (classifying places) detects table lamps. Unit 246 in Gonzalez-Garcia
et al. [2016] (classifying objects) detects bicycle wheels. A unit in Vondrick et al. [2016]
(self-supervised for generating videos) detects people.

57

learning disentangled representations spontaneously. While it is commonly understood

that a network can learn an efficient encoding that makes economical use of hidden

variables to distinguish its states, the appearance of a disentangled representation is

not well-understood. A disentangled representation aligns its variables with a mean-

ingful factorization of the underlying problem structure, and encouraging disentangled

representations is a significant area of research [Bengio et al., 2013]. If the internal

representation of a deep network is partly disentangled, one possible path for under-

standing its mechanisms is to detect disentangled structure, and simply read out the

separated factors.

However, this proposal raises questions which we address in this chapter:

• What is a disentangled representation, and how can its factors be quantified and

detected?

• Do interpretable hidden units reflect a special alignment of feature space, or are

interpretations a chimera?

• What conditions in state-of-the-art training lead to representations with greater

or lesser entanglement?

To examine these issues, we propose a general analytic framework, network dissec-

tion, for interpreting deep visual representations and quantifying their interpretability.

Using Broden, a broadly and densely labeled data set, our framework identifies hidden

units’ semantics for any given CNN, then aligns them with human-interpretable con-

cepts. We evaluate our method on various CNNs (AlexNet, VGG, GoogLeNet, ResNet)

trained on object and scene recognition, and show that emergent interpretability is an

axis-aligned property of a representation that can be destroyed by rotation without

affecting discriminative power. We further examine how interpretability is affected by

training data sets, training techniques like dropout [Srivastava et al., 2014] and batch

normalization [Ioffe and Szegedy, 2015], and supervision by different primary tasks∗.

∗Source code and data available at http://netdissect.csail.mit.edu

58

http://netdissect.csail.mit.edu

3.1.1 Related work

A growing number of techniques have been developed to understand the internal

representations of convolutional neural networks through visualization. The behavior

of a CNN can be visualized by sampling image patches that maximize activation

of hidden units [Zeiler and Fergus, 2014, Zhou et al., 2015], or by using variants

of backpropagation to identify or generate salient image features [Mahendran and

Vedaldi, 2015, Simonyan et al., 2014, Zeiler and Fergus, 2014]. The discriminative

power of hidden layers of CNN features can also be understood by isolating portions

of networks, transferring them or limiting them, and testing their capabilities on

specialized problems [Yosinski et al., 2014, Razavian et al., 2014, Agrawal et al., 2014].

Visualizations digest the mechanisms of a network down to images which themselves

must be interpreted; this motivates our work which aims to match representations of

CNNs with labeled interpretations directly and automatically.

Most relevant to our current work are explorations of the roles of individual units

inside neural networks. In Zhou et al. [2015] human evaluation was used to determine

that individual units behave as object detectors in a network that was trained to

classify scenes. Nguyen et al. [2016] automatically generated prototypical images for

individual units by learning a feature inversion mapping; this contrasts with our

approach of automatically assigning concept labels. Recently Alain and Bengio [2017]

suggested an approach to testing the intermediate layers by training simple linear

probes, which analyzes the information dynamics among layers and its effect on the

final prediction.

3.2 Network Dissection

How can we quantify the clarity of an idea? The notion of a disentangled representation

rests on the human perception of what it means for a concept to be mixed up. Therefore

when we quantify interpretability, we define it in terms of alignment with a set of

human-interpretable concepts. Our measurement of interpretability for deep visual

representations proceeds in three steps:

59

1. Identify a broad set of human-labeled visual concepts.

2. Gather hidden variables’ response to known concepts.

3. Quantify alignment of hidden variable−concept pairs.

This three-step process of network dissection is reminiscent of the procedures used

by neuroscientists to understand similar representation questions in biological neu-

rons Quiroga et al. [2005]. Since our purpose is to measure the level to which a

representation is disentangled, we focus on quantifying the correspondence between a

single latent variable and a visual concept.

In a fully interpretable local coding such as a one-hot-encoding, each variable

will match exactly with one human-interpretable concept. Although we expect a

network to learn partially nonlocal representations in interior layers [Bengio et al.,

2013], and past experience shows that an emergent concept will often align with a

combination of a several hidden units [Gonzalez-Garcia et al., 2016, Agrawal et al.,

2014], our present aim is to assess how well a representation is disentangled. Therefore

we measure the alignment between single units and single interpretable concepts. This

does not gauge the discriminative power of the representation; rather it quantifies

its disentangled interpretability. As we will show in Sec. 3.3.2, it is possible for two

representations of perfectly equivalent discriminative power to have very different

levels of interpretability.

To assess the interpretability of any given CNN, we draw concepts from a new

broadly and densely labeled image data set that unifies labeled visual concepts from

a heterogeneous collection of labeled data sources, described in Sec. 3.2.1. We then

measure the alignment of each hidden unit of the CNN with each concept by evaluating

the feature activation of each individual unit as a segmentation model for each concept.

To quantify the interpretability of a layer as a whole, we count the number of distinct

visual concepts that are aligned with a unit in the layer, as detailed in Sec. 3.2.2.

60

street (scene) flower (object) headboard (part)

swirly (texture) pink (color) metal (material)

Figure 3-2: Samples from the Broden Dataset. The ground truth for each concept is a
pixel-wise dense annotation.

Table 3.1: Statistics of each label type included in the data set.

Category Classes Sources Avg sample
scene 468 ADE Zhou et al. [2017] 38
object 584 ADE Zhou et al. [2017], Pascal-Context Mottaghi et al. [2014] 491
part 234 ADE Zhou et al. [2017], Pascal-Part Chen et al. [2014] 854

material 32 OpenSurfaces Bell et al. [2014] 1,703
texture 47 DTD Cimpoi et al. [2014] 140
color 11 Generated 59,250

3.2.1 Broden: Broadly and Densely Labeled Dataset

To be able to ascertain alignment with both low-level concepts such as colors and

higher-level concepts such as objects, we have assembled a new heterogeneous data

set.

The Broadly and Densely Labeled Dataset (Broden) unifies several densely labeled

image data sets: ADE [Zhou et al., 2017], OpenSurfaces [Bell et al., 2014], Pascal-

Context [Mottaghi et al., 2014], Pascal-Part [Chen et al., 2014], and the Describable

Textures Dataset [Cimpoi et al., 2014]. These data sets contain examples of a broad

range of objects, scenes, object parts, textures, and materials in a variety of contexts.

Most examples are segmented down to the pixel level except textures and scenes which

are given for full-images. In addition, every image pixel in the data set is annotated

with one of the eleven common color names according to the human perceptions

classified by Van De Weijer et al. [2009]. A sample of the types of labels in the Broden

dataset are shown in Fig. 3-2.

The purpose of Broden is to provide a ground truth set of exemplars for a broad

61

set of visual concepts. The concept labels in Broden are normalized and merged from

their original data sets so that every class corresponds to an English word. Labels are

merged based on shared synonyms, disregarding positional distinctions such as ‘left’

and ‘top’ and avoiding a blacklist of 29 overly general synonyms (such as ‘machine’ for

‘car’). Multiple Broden labels can apply to the same pixel: for example, a black pixel

that has the Pascal-Part label ‘left front cat leg’ has three labels in Broden: a unified

‘cat’ label representing cats across data sets; a similar unified ‘leg’ label; and the color

label ‘black’. Only labels with at least 10 image samples are included. Table 3.1 shows

the average number of image samples per label class.

3.2.2 Scoring unit interpretability

The proposed network dissection method evaluates every individual convolutional

unit in a CNN as a solution to a binary segmentation task to every visual concept

in Broden (Fig. 3-3). Our method can be applied to any CNN using a forward pass

without the need for training or backpropagation.

For every input image x in the Broden dataset, the activation map 𝐴𝑘(x) of every

internal convolutional unit 𝑘 is collected. Then the distribution of individual unit

activations 𝑎𝑘 is computed. For each unit 𝑘, the top quantile level 𝑇𝑘 is determined

such that 𝑃 (𝑎𝑘 > 𝑇𝑘) = 0.005 over every spatial location of the activation map in the

data set.

To compare a low-resolution unit’s activation map to the input-resolution annota-

tion mask 𝐿𝑐 for some concept 𝑐, the activation map is scaled up to the mask resolution

𝑆𝑘(x) from 𝐴𝑘(x) using bilinear interpolation, anchoring interpolants at the center of

each unit’s receptive field.

𝑆𝑘(x) is then thresholded into a binary segmentation: 𝑀𝑘(x) ≡ 𝑆𝑘(x) ≥ 𝑇𝑘, select-

ing all regions for which the activation exceeds the threshold 𝑇𝑘. These segmentations

are evaluated against every concept 𝑐 in the data set by computing intersections

𝑀𝑘(x) ∩ 𝐿𝑐(x), for every (𝑘, 𝑐) pair.

The score of each unit 𝑘 as segmentation for concept 𝑐 is reported as a data-set-wide

62

intersection over union score

𝐼𝑜𝑈𝑘,𝑐 =

∑︀
|𝑀𝑘(x) ∩ 𝐿𝑐(x)|∑︀
|𝑀𝑘(x) ∪ 𝐿𝑐(x)|

, (3.1)

where | · | is the cardinality of a set. Because the data set contains some types of labels

which are not present on some subsets of inputs, the sums are computed only on the

subset of images that have at least one labeled concept of the same category as 𝑐. The

value of 𝐼𝑜𝑈𝑘,𝑐 is the accuracy of unit 𝑘 in detecting concept 𝑐; we consider one unit 𝑘

as a detector for concept 𝑐 if 𝐼𝑜𝑈𝑘,𝑐 exceeds a threshold. Our qualitative results are

insensitive to the IoU threshold: different thresholds denote different numbers of units

as concept detectors across all the networks but relative orderings remain stable. For

our comparisons we report a detector if 𝐼𝑜𝑈𝑘,𝑐 > 0.04. Note that one unit might be

the detector for multiple concepts; for the purpose of our analysis, we choose the top

ranked label. To quantify the interpretability of a layer, we count the number unique

concepts aligned with units. We call this the number of unique detectors.

The IoU evaluating the quality of the segmentation of a unit is an objective

confidence score for interpretability that is comparable across networks. Thus this

score enables us to compare interpretability of different representations and lays the

basis for the experiments below. Note that network dissection works only as well as

the underlying data set: if a unit matches a human-understandable concept that is

absent in Broden, then it will not score well for interpretability. Future versions of

Broden will be expanded to include more kinds of visual concepts.

3.3 Experiments

For testing we prepare a collection of CNN models with different network architectures

and supervision of primary tasks, as listed in Table 3.2. The network architectures

include AlexNet [Krizhevsky et al., 2012], GoogLeNet [Szegedy et al., 2015], VGG

[Simonyan and Zisserman, 2015], and ResNet [He et al., 2016]. For supervised training,

the models are trained from scratch (i.e., not pretrained) on ImageNet Russakovsky

63

Input image Network being probed Pixel-wise segmentation

Freeze trained network weights

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

Upsample target layer

O
n
e

U
n
it

A
ct

iv
a
ti
o
n

C
o
lo

rs

T
ex

tu
re

s

M
a
te

ri
a
ls

S
ce

n
es

P
a
rt

s

Evaluate on segmentation tasks

O
b
je

ct
s

Figure 3-3: Illustration of network dissection for measuring semantic alignment of units
in a given CNN. Here one unit of the last convolutional layer of a given CNN is probed
by evaluating its performance on 1197 segmentation tasks. Our method can probe any
convolutional layer.

Table 3.2: Tested CNN Models.

Training Network Data set or task
none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.

VGG-16 ImageNet, Places205, Places365, Hybrid.
ResNet-152 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,
tracking, moving, videoorder,
audio, crosschannel,colorization.
objectcentric.

64

et al. [2015], Places205 [Zhou et al., 2014], and Places365 [Zhou et al., 2016]. ImageNet

is an object-centric data set, which contains 1.2 million images from 1000 classes.

Places205 and Places365 are two subsets of the Places Database, which is a scene-centric

data set with categories such as kitchen, living room, and coast. Places205 contains

2.4 million images from 205 scene categories, while Places365 contains 1.6 million

images from 365 scene categories. “Hybrid” refers to a combination of ImageNet and

Places365. For self-supervised training tasks, we select several recent models trained on

predicting context (context) Doersch et al. [2015], solving puzzles (puzzle) Noroozi

and Favaro [2016], predicting ego-motion (egomotion) Jayaraman and Grauman [2015],

learning by moving (moving) Agrawal et al. [2015], predicting video frame order

(videoorder) Mikjjsra et al. [2016] or tracking (tracking) Wang and Gupta [2015],

detecting object-centric alignment (objectcentric) Gao et al. [2016], colorizing images

(colorization) Zhang et al. [2016], predicting cross-channel (crosschannel) Zhang

et al. [2017], and predicting ambient sound from frames (audio) Owens et al. [2016].

The self-supervised models we analyze are comparable to each other in that they all

use AlexNet or an AlexNet-derived architecture.

In the following experiments, we begin by validating our method using human

evaluation. Then, we use random unitary rotations of a learned representation to

test whether interpretability of CNNs is an axis-independent property; we find that

it is not, and we conclude that interpretability is not an inevitable result of the

discriminative power of a representation. Next, we analyze all the convolutional layers

of AlexNet as trained on ImageNet [Krizhevsky et al., 2012] and as trained on Places

[Zhou et al., 2014], and confirm that our method reveals detectors for higher-level

concepts at higher layers and lower-level concepts at lower layers; and that more

detectors for higher-level concepts emerge under scene training. Then, we show that

different network architectures such as AlexNet, VGG, and ResNet yield different

interpretability, while differently supervised training tasks and self-supervised training

tasks also yield a variety of levels of interpretability. Finally we show the impact of

different training conditions, examine the relationship between discriminative power

and interpretability, and investigate a possible way to improve the interpretability of

65

Table 3.3: Human evaluation of our Network Dissection approach. Interpretable units are
those where raters agreed with ground-truth interpretations. Within this set we report the
portion of interpretations assigned by our method that were rated as descriptive. Human
consistency is based on a second evaluation of ground-truth labels.

conv1 conv2 conv3 conv4 conv5
Interpretable units 57/96 126/256 247/384 258/384 194/256
Human consistency 82% 76% 83% 82% 91%
Network Dissection 37% 56% 54% 59% 71%

CNNs by increasing their width.

3.3.1 Human evaluation of interpretations

We evaluate the quality of the unit interpretations found by our method using Amazon

Mechanical Turk (AMT). Raters were shown 15 images with highlighted patches

showing the most highly-activating regions for each unit in AlexNet trained on

Places205, and asked to decide (yes/no) whether a given phrase describes most of the

image patches.

Table 3.3 summarizes the results. First, we determined the set of interpretable

units as those units for which raters agreed with ground-truth interpretations from

Zhou et al. [2015]. Over this set of units, we report the portion of interpretations

generated by our method that were rated as descriptive. Within this set we also

compare to the portion of ground-truth labels that were found to be descriptive by a

second group of raters. The proposed method can find semantic labels for units that

are comparable to descriptions written by human annotators at the highest layer. At

the lowest layer, the low-level color and texture concepts available in Broden are only

sufficient to match good interpretations for a minority of units. Human consistency

is also highest at conv5, which suggests that humans are better at recognizing and

agreeing upon high-level visual concepts such as objects and parts, rather than the

shapes and textures that emerge at lower layers.

66

3.3.2 Measurement of axis-aligned interpretability

We conduct an experiment to determine whether it is meaningful to assign an in-

terpretable concept to an individual unit. Two possible hypotheses can explain the

emergence of interpretability in individual hidden layer units:

Hypothesis 1. Interpretable units emerge because interpretable concepts appear in

most directions in representation space. If the representation localizes related

concepts in an axis-independent way, projecting to any direction could reveal

an interpretable concept, and interpretations of single units in the natural basis

may not be a meaningful way to understand a representation.

Hypothesis 2. Interpretable alignments are unusual, and interpretable units emerge

because learning converges to a special basis that aligns explanatory factors

with individual units. In this model, the natural basis represents a meaningful

decomposition learned by the network.

Hypothesis 1 is the default assumption: in the past it has been found [Szegedy et al.,

2014] that with respect to interpretability “there is no distinction between individual

high level units and random linear combinations of high level units.”

Network dissection allows us to re-evaluate this hypothesis. We apply random

changes in basis to a representation learned by AlexNet. Under hypothesis 1, the

overall level of interpretability should not be affected by a change in basis, even as

rotations cause the specific set of represented concepts to change. Under hypothesis 2,

the overall level of interpretability is expected to drop under a change in basis.

We begin with the representation of the 256 convolutional units of AlexNet conv5

trained on Places205 and examine the effect of a change in basis. To avoid any issues of

conditioning or degeneracy, we change basis using a random orthogonal transformation

𝑄. The rotation 𝑄 is drawn uniformly from 𝑆𝑂(256) by applying Gram-Schmidt on a

normally-distributed 𝑄𝑅 = 𝐴 ∈ R2562 with positive-diagonal right-triangular 𝑅, as

described by Diaconis [2005]. Interpretability is summarized as the number of unique

visual concepts aligned with units, as defined in Sec. 3.2.2.

67

baseline rotate 0.2 rotate 0.4 rotate 0.6 rotate 0.8 rotate 1
0

10

20

30

40
N

u
m

b
e

r
o

f
u

n
iq

u
e

 d
e

te
c
to

rs object

part

scene

material

texture

color

Figure 3-4: Interpretability over changes in basis of the representation of AlexNet conv5
trained on Places. The vertical axis shows the number of unique interpretable concepts that
match a unit in the representation. The horizontal axis shows 𝛼, which quantifies the degree
of rotation.

Denoting AlexNet conv5 as 𝑓(𝑥), we find that the number of unique detectors

in 𝑄𝑓(𝑥) is 80% fewer than the number of unique detectors in 𝑓(𝑥). Our finding is

inconsistent with hypothesis 1 and consistent with hypothesis 2.

We also test smaller perturbations of basis using 𝑄𝛼 for 0 ≤ 𝛼 ≤ 1, where the

fractional powers 𝑄𝛼 ∈ 𝑆𝑂(256) are chosen to form a minimal geodesic gradually

rotating from 𝐼 to 𝑄; these intermediate rotations are computed using a Schur

decomposition. Fig. 3-4 shows that interpretability of 𝑄𝛼𝑓(𝑥) decreases as larger

rotations are applied.

Each rotated representation has exactly the same discriminative power as the

original layer. Writing the original network as 𝑔(𝑓(𝑥)), note that 𝑔′(𝑟) ≡ 𝑔(𝑄𝑇 𝑟)

defines a neural network that processes the rotated representation 𝑟 = 𝑄𝑓(𝑥) exactly

as the original 𝑔 operates on 𝑓(𝑥). We conclude that interpretability is neither an

inevitable result of discriminative power, nor is it a prerequisite to discriminative power.

Instead, we find that interpretability is a different quality that must be measured

separately to be understood.

68

conv1 conv2 conv3 conv4 conv5
0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
u
n
iq

u
e
 d

e
te

c
to

rs

AlexNet on Places205

object

part

scene

material

texture

color

veined (texture)h:green

orange (color)h:color yellow

red (color)h:pink or red

sky (object) h:sky

lacelike (texture)h:black&white

lined (texture)h:grid pattern

grass (object) h:grass

banded (texture)h:corrugated

perforated (texture)h:pattern

chequered (texture)h:windows

tree (object) h:tree

crosswalk (part)h:horiz. lines

bed (object) h:bed

car (object) h:car

mountain (scene)h:montain

conv1 conv2 conv3 conv4 conv5
0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
u
n
iq

u
e
 d

e
te

c
to

rs

AlexNet on ImageNet

object

part

scene

material

texture

color

red (color) h:red

yellow (color) h:yellow

sky (object) h:blue

woven (texture)h:yellow

banded (texture)h:striped

grid (texture) h:mesh

food (material)h:orange

sky (object) h:blue sky

dotted (texture)h:nosed

muzzle (part)h:animal face

swirly (texture)h:round

head (part) h:face

wheel (part) h:wheels

cat (object)h:animal faces

leg (part) h:leg

conv1 conv2 conv3 conv4 conv5

Figure 3-5: A comparison of the interpretability of all five convolutional layers of AlexNet,
as trained on classification tasks for Places (top) and ImageNet (bottom). At right, three
examples of units in each layer are shown with identified semantics. The segmentation
generated by each unit is shown on the three Broden images with highest activation. Top-
scoring labels are shown above to the left, and human-annotated labels are shown above
to the right. Some disagreement can be seen for the dominant judgment of meaning. For
example, human annotators mark the first conv4 unit on Places as a ‘windows’ detector,
while the algorithm matches the ‘chequered’ texture.

House Dog Train Plant Airplane

R
es
N
et
-1
52

res5c unit 1410 IoU=0.142 res5c unit 1573 IoU=0.216 res5c unit 924 IoU=0.293 res5c unit 264 IoU=0.126 res5c unit 1243 IoU=0.172

res5c unit 301 IoU=0.087 res5c unit 1718 IoU=0.193 res5c unit 2001 IoU=0.255 res5c unit 766 IoU=0.092 res5c unit 1379 IoU=0.156

G
oo
gL
eN

et

inception_4e unit 789 IoU=0.137 inception_4e unit 750 IoU=0.203 inception_5b unit 626 IoU=0.145 inception_4e unit 56 IoU=0.139 inception_4e unit 92 IoU=0.164

inception_4e unit 175 IoU=0.115 inception_4e unit 225 IoU=0.152 inception_5b unit 415 IoU=0.143 inception_4e unit 714 IoU=0.105 inception_4e unit 759 IoU=0.144

VG
G
-1
6

conv5_3 unit 243 IoU=0.070 conv5_3 unit 142 IoU=0.205 conv5_3 unit 463 IoU=0.126 conv5_3 unit 85 IoU=0.086 conv5_3 unit 151 IoU=0.150

conv5_3 unit 102 IoU=0.070 conv5_3 unit 491 IoU=0.112 conv5_3 unit 402 IoU=0.058 conv4_3 unit 336 IoU=0.068 conv5_3 unit 204 IoU=0.077

Figure 3-6: A comparison of several visual concept detectors identified by network dissection
in ResNet, GoogLeNet, and VGG. Each network is trained on Places365. The two highest-IoU
matches among convolutional units of each network is shown. The segmentation generated
by each unit is shown on the four maximally activating Broden images. Some units activate
on concept generalizations, e.g., GoogLeNet 4e’s unit 225 on horses and dogs, and 759 on
white ellipsoids and jets.

69

R
es

N
et

15
2-

Pla
ce

s3
65

R
es

N
et

15
2-

Im
ag

eN
et

VG
G
-P

la
ce

s2
05

VG
G
-H

yb
rid

VG
G
-P

la
ce

s3
65

G
oo

gL
eN

et
-P

la
ce

s3
65

G
oo

gL
eN

et
-P

la
ce

s2
05

G
oo

gL
eN

et
-Im

ag
eN

et

VG
G
-Im

ag
eN

et

Ale
xN

et
-P

la
ce

s3
65

Ale
xN

et
-H

yb
rid

Ale
xN

et
-P

la
ce

s2
05

Ale
xN

et
-Im

ag
eN

et

Ale
xN

et
-ra

nd
om

0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

u
n

iq
u

e
 d

e
te

c
to

rs

object

part

scene

material

texture

color

Figure 3-7: Interpretability across different architectures and training.

3.3.3 Disentangled concepts by layer

Using network dissection, we analyze and compare the interpretability of units within

all the convolutional layers of Places-AlexNet and ImageNet-AlexNet. Places-AlexNet

is trained for scene classification on Places205 [Zhou et al., 2014], while ImageNet-

AlexNet is the identical architecture trained for object classification on ImageNet

[Krizhevsky et al., 2012].

The results are summarized in Fig. 3-5. A sample of units are shown together with

both automatically inferred interpretations and manually assigned interpretations

taken from Zhou et al. [2015]. We can see that the predicted labels match the human

annotation well, though sometimes they capture a different description of a visual

concept, such as the ‘crosswalk’ predicted by the algorithm compared to ‘horizontal

lines’ given by the human for the third unit in conv4 of Places-AlexNet in Fig. 3-5.

Confirming intuition, color and texture concepts dominate at lower layers conv1 and

conv2 while more object and part detectors emerge in conv5.

70

Ale
xN

et
-P

la
ce

s3
65

Ale
xN

et
-H

yb
rid

Ale
xN

et
-P

la
ce

s2
05

Ale
xN

et
-Im

ag
eN

et

tra
ck

in
g

ob
je
ct
ce

nt
ric

au
di
o

m
ov

in
g

co
lo
riz

at
io
n

pu
zz

le

eg
om

ot
io
n

co
nt

ex
t

fra
m

eo
rd

er

Ale
xN

et
-ra

nd
om

0

20

40

60

80

100

N
u

m
b

e
r

o
f

u
n

iq
u

e
 d

e
te

c
to

rs

object

part

scene

material

texture

color

Supervised Self-supervised

Figure 3-8: Semantic detectors emerge across different supervision of the primary training
task. All these models use the AlexNet architecture and are tested at conv5.

3.3.4 Network architectures and supervisions

How do different network architectures and training supervisions affect disentangled

interpretability of the learned representations? We apply network dissection to evaluate

a range of network architectures and supervisions. For simplicity, the following experi-

ments focus on the last convolutional layer of each CNN, where semantic detectors

emerge most.

Results showing the number of unique detectors that emerge from various network

architectures trained on ImageNet and Places are plotted in Fig. 3-7, with examples

shown in Fig. 3-6. In terms of network architecture, we find that interpretability

of ResNet > VGG > GoogLeNet > AlexNet. Deeper architectures appear to allow

greater interpretability. Comparing training data sets, we find Places > ImageNet. As

discussed in Zhou et al. [2015], one scene is composed of multiple objects, so it may

be beneficial for more object detectors to emerge in CNNs trained to recognize scenes.

Results from networks trained on various supervised and self-supervised tasks

are shown in Fig. 3-8. Here the network architecture is AlexNet for each model, We

71

audio puzzle colorization tracking
chequered (texture) 0.102 head (part) 0.091 dotted (texture) 0.140 chequered (texture) 0.167

car (object) 0.063 perforated (texture) 0.085 head (part) 0.056 grass (object) 0.120

head (part) 0.061 sky (object) 0.069 sky (object) 0.048 red-c (color) 0.100

Figure 3-9: The top ranked concepts in the three top categories in four self-supervised
networks. Some object and part detectors emerge in audio. Detectors for person heads also
appear in puzzle and colorization. A variety of texture concepts dominate models with
self-supervised training.

observe that training on Places365 creates the largest number of unique detectors. Self-

supervised models create many texture detectors but relatively few object detectors;

apparently, supervision from a self-taught primary task is much weaker at inferring

interpretable concepts than supervised training on a large annotated data set. The form

of self-supervision makes a difference: for example, the colorization model is trained

on colorless images, and almost no color detection units emerge. We hypothesize that

emergent units represent concepts required to solve the primary task.

Fig. 3-9 shows some typical visual detectors identified in the self-supervised CNN

models. For the models audio and puzzle, some object and part detectors emerge.

Those detectors may be useful for CNNs to solve the primary tasks: the audio model is

trained to associate objects with a sound source, so it may be useful to recognize people

and cars; while the puzzle model is trained to align the different parts of objects and

scenes in an image. For colorization and tracking, recognizing textures might be

good enough for the CNN to solve primary tasks such as colorizing a desaturated

natural image; thus it is unsurprising that the texture detectors dominate.

72

10
0

10
2

10
4

10
6

Training iteration

0

10

20

30

40

N
u

m
b

e
r

o
f
u

n
iq

u
e

 d
e
te

c
to

rs

object

part

scene

material

texture

color

ba
se

lin
e

re
pe

at
1

re
pe

at
2

re
pe

at
3

N
oD

ro
po

ut

Bat
ch

N
or

m

0

20

40

60

80

100

N
u

m
b
e

r
o

f
u
n

iq
u
e

 d
e
te

c
to

rs object

part

scene

material

texture

color

Figure 3-10: The evolution of the interpretability of conv5 of Places205-AlexNet over 2,400,000
training iterations. The baseline model is trained to 300,000 iterations (marked at the red
line).

Number of detectors

ba
se

lin
e

re
pe

at
1

re
pe

at
2

re
pe

at
3

N
oD

ro
po

ut

Bat
ch

N
or

m

0

50

100

150

200
object

part

scene

material

texture

color

Number of unique detectors

ba
se

lin
e

re
pe

at
1

re
pe

at
2

re
pe

at
3

N
oD

ro
po

ut

Bat
ch

N
or

m

0

20

40

60

80

100
object

part

scene

material

texture

color

Figure 3-11: Effect of regularizations on the interpretability of CNNs.

73

3.3.5 Training conditions vs. interpretability

Training conditions such as the number of training iterations, dropout [Srivastava

et al., 2014], batch normalization Ioffe and Szegedy [2015], and random initialization

[Li et al., 2015], are known to affect the representation learning of neural networks.

To analyze the effect of training conditions on interpretability, we take the Places205-

AlexNet as the baseline model and prepare several variants of it, all using the same

AlexNet architecture. For the variants Repeat1, Repeat2 and Repeat3, we randomly

initialize the weights and train them with the same number of iterations. For the

variant NoDropout, we remove the dropout in the FC layers of the baseline model. For

the variant BatchNorm, we apply batch normalization at each convolutional layers

of the baseline model. Repeat1, Repeat2, Repeat3 all have nearly the same top-1

accuracy 50.0% on the validation set. The variant without dropout has top-1 accuracy

49.2%. The variant with batch norm has top-1 accuracy 50.5%.

In Fig. 3-10 we plot the interpretability of snapshots of the baseline model at

different training iterations. We can see that object detectors and part detectors

begin emerging at about 10,000 iterations (each iteration processes a batch of 256

images). We do not find evidence of transitions across different concept categories

during training. For example, units in conv5 do not turn into texture or material

detectors before becoming object or part detectors.

Fig. 3-11 shows the interpretability of units in the CNNs over different training

conditions. We find several effects: 1) Comparing different random initializations,

the models converge to similar levels of interpretability, both in terms of the unique

detector number and the total detector number; this matches observations of convergent

learning discussed in Li et al. [2015]. 2) For the network without dropout, more texture

detectors emerge but fewer object detectors. 3) Batch normalization seems to decrease

interpretability significantly.

The batch normalization result serves as a caution that discriminative power is

not the only property of a representation that should be measured. Our intuition for

the loss of interpretability under batch normalization is that the batch normalization

74

‘whitens’ the activation at each layer, which smooths out scaling issues and allows a

network to easily rotate axes of intermediate representations during training. While

whitening apparently speeds training, it may also have an effect similar to random

rotations analyzed in Sec. 3.3.2 which destroy interpretability. As discussed in Sec. 3.3.2,

however, interpretability is neither a prerequisite nor an obstacle to discriminative

power. Finding ways to capture the benefits of batch normalization without destroying

interpretability is an important area for future work.

3.3.6 Discrimination vs. interpretability

Activations from the higher layers of CNNs are often used as generic visual features,

showing great discrimination and generalization ability [Zhou et al., 2014, Razavian

et al., 2014]. Here we benchmark deep features from several networks trained on several

standard image classification data sets for their discrimination ability on a new task.

For each trained model, we extract the representation at the highest convolutional

layer, and train a linear SVM with 𝐶 = 0.001 on the training data for action40 action

recognition task [Yao et al., 2011]. We compute the classification accuracy averaged

across classes on the test split.

Fig. 3-12 plots the number of the unique object detectors for each representation,

compared to that representation’s classification accuracy on the action40 test set. We

can see there is positive correlation between them. Thus the supervision tasks that

encourage the emergence of more concept detectors may also improve the discrimi-

nation ability of deep features. Interestingly, the best discriminative representation

for action40 is the representation from ResNet152-ImageNet, which has fewer unique

object detectors compared to ResNet152-Places365. We hypothesize that the accuracy

on a representation when applied to a task is dependent not only on the number of

concept detectors in the representation, but on the suitability of the set of represented

concepts to the transfer task.

75

Colorization

0.1 0.3 0.5 0.7
Accuracy on action40

0

20

40

60

80

100

N
um

be
r

of
 u

ni
qu

e
ob

je
ct

 d
et

ec
to

rs

Frameorder

ResNet152-Places365

VGG-Hybrid

VGG-Places205

VGG-Places365
ResNet152-ImageNet

VGG-ImageNet

GoogLeNet-ImageNet

AlexNet-Places365

AlexNet-ImageNet

AlexNet-Places205-BN

AlexNet-Hybrid

AlexNet-random Egomotion

ObjectcentricMoving

Puzzle

Tracking
Audio
Crosschannel

Context

AlexNet-Places205
GoogLeNet-Places205

GoogLeNet-Places365

Figure 3-12: The number of unique object detectors in the last convolutional layer compared
to each representation’s classification accuracy on the action40 data set. Supervised and
unsupervised representations clearly form two clusters.

3.3.7 Layer width vs. interpretability

From AlexNet to ResNet, CNNs for visual recognition have grown deeper in the quest

for higher classification accuracy. Depth has been shown to be important to high

discrimination ability, and we have seen in Sec. 3.3.4 that interpretability can increase

with depth as well. However, the width of layers (the number of units per layer)

has been less explored. One reason is that increasing the number of convolutional

units at a layer significantly increases computational cost while yielding only marginal

improvements in classification accuracy. Nevertheless, some recent work [Zagoruyko and

Komodakis, 2016] shows that a carefully designed wide residual network can achieve

classification accuracy superior to the commonly used thin and deep counterparts.

To explore how the width of layers affects interpretability of CNNs, we do a

preliminary experiment to test how width affects emergence of interpretable detectors:

we remove the FC layers of the AlexNet, then triple the number of units at the conv5,

i.e., from 256 units to 768 units. Finally we put a global average pooling layer after

conv5 and fully connect the pooled 768-feature activations to the final class prediction.

We call this model AlexNet-GAP-Wide.

After training on Places365, the AlexNet-GAP-Wide obtains similar classification

76

Number of detectors

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5
0

100

200

300

400
object

part

scene

material

texture

color

Number of unique detectors

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5
0

20

40

60

80

100

120 object

part

scene

material

texture

color

AlexNet AlexNet-GAP-WideAlexNetAlexNet-GAP-Wide

Figure 3-13: Comparison between standard AlexNet and AlexNet-GAP-Wide (AlexNet with
wider conv5 layer and GAP layer) through the number of unique detectors (the left plot)
and the number of detectors (the right plot). Widening the layer brings the emergence of
more detectors. Networks are trained on Places365.

accuracy on the validation set as the standard AlexNet (0.5% top1 accuracy lower),

but it has many more emergent concept detectors, both in terms of the number of

unique detectors and the number of detector units at conv5, as shown in Fig. 3-13. We

have also increased the number of units to 1024 and 2048 at conv5, but the number

of unique concepts does not significantly increase further. This may indicate a limit

on the capacity of AlexNet to separate explanatory factors; or it may indicate that a

limit on the number of disentangled concepts that are helpful to solve the primary

task of scene classification.

3.4 Discussion

This paper proposed a general framework, network dissection, for quantifying inter-

pretability of CNNs. We applied network dissection to measure whether interpretability

is an axis-independent phenomenon, and we found that it is not. This is consistent

with the hypothesis that interpretable units indicate a partially disentangled represen-

tation. We applied network dissection to investigate the effects on interpretability of

state-of-the art CNN training techniques. We have confirmed that representations at

different layers disentangle different categories of meaning; and that different training

techniques can have a significant effect on the interpretability of the representation

77

learned by hidden units.

Bibliography

Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the performance of

multilayer neural networks for object recognition. ECCV, 2014.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In

ICCV, 2015.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear

classifier probes. In ICLR Workshop, 2017.

Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images in the wild. ACM Trans.

on Graphics (SIGGRAPH), 2014.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and

Alan Yuille. Detect what you can: Detecting and representing objects using holistic

models and body parts. In CVPR, 2014.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea

Vedaldi. Describing textures in the wild. In CVPR, 2014.

Persi Diaconis. What is a random matrix? Notices of the AMS, 52(11):1348–1349,

2005.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation

learning by context prediction. In CVPR, 2015.

Ruohan Gao, Dinesh Jayaraman, and Kristen Grauman. Object-centric representation

learning from unlabeled videos. arXiv:1612.00500, 2016.

78

Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. Do semantic parts emerge

in convolutional neural networks? arXiv:1607.03738, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In CVPR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, 2015.

Dinesh Jayaraman and Kristen Grauman. Learning image representations tied to

ego-motion. In ICCV, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In NeurIPS, pages 1097–1105, 2012.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Con-

vergent learning: Do different neural networks learn the same representations?

arXiv:1511.07543, 2015.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In CVPR, 2015.

Ishan Mikjjsra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsuper-

vised learning using temporal order verification. In ECCV, 2016.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja

Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection

and semantic segmentation in the wild. In CVPR, 2014.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.

Synthesizing the preferred inputs for neurons in neural networks via deep generator

networks. NeurIPS, 2016.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by

solving jigsaw puzzles. In ECCV, 2016.

79

Andrew Owens, Jiajun Wu, Josh H McDermott, William T Freeman, and Antonio

Torralba. Ambient sound provides supervision for visual learning. In ECCV, 2016.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried.

Invariant visual representation by single neurons in the human brain. Nature, 435

(7045):1102–1107, 2005.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn

features off-the-shelf: an astounding baseline for recognition. arXiv:1403.6382, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. IJCV, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In ICLR, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. In ICLR

Workshop, 2014.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR,

2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In CVPR, 2015.

Joost Van De Weijer, Cordelia Schmid, Jakob Verbeek, and Diane Larlus. Learning

color names for real-world applications. IEEE Transactions on Image Processing,

18(7):1512–1523, 2009.

80

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with

scene dynamics. In NeurIPS, 2016.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations

using videos. In CVPR, 2015.

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas, and

Li Fei-Fei. Human action recognition by learning bases of action attributes and

parts. In ICCV, 2011.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? NeurIPS, 2014.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146,

2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In

ECCV, 2016.

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsuper-

vised learning by cross-channel prediction. In CVPR, 2017.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

Learning deep features for scene recognition using places database. In NeurIPS,

2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Object detectors emerge in deep scene cnns. In ICLR, 2015.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva.

Places: An image database for deep scene understanding. arXiv:1610.02055, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. Scene parsing through ade20k dataset. In CVPR, 2017.

81

82

Chapter 4

GAN Dissection
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,
Joshua B. Tenenbaum, William T. Freeman,
Antonio Torralba. ICLR 2019.

4.1 Introduction

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have been able

to produce photorealistic images, often indistinguishable from real images. This

remarkable ability has powered many real-world applications ranging from visual

recognition [Wang et al., 2017], to image manipulation [Isola et al., 2017, Zhu et al.,

2017], to video prediction [Mathieu et al., 2016]. Since its invention in 2014, many

GAN variants have been proposed [Radford et al., 2016, Zhang et al., 2018], often

producing more realistic and diverse samples with better training stability.

Despite this tremendous success, many questions remain to be answered. For

example, to produce a church image (Figure 4-1a), what knowledge does a GAN need

to learn? Alternatively, when a GAN sometimes produces terribly unrealistic images

(Figure 4-1f), what causes the mistakes? Why does one GAN variant work better than

another? What fundamental differences are encoded in their weights?

In this work, we study the internal representations of GANs. To a human observer,

a well-trained GAN appears to have learned facts about the objects in the image: for

83

(a) Generate images of churches

(b) Identify GAN units that match trees

(c) Ablating units removes trees

(d) Activating units adds trees (g) Ablating “artifact” units improves results

(e) Identify GAN units that cause artifacts

(f) Bedroom images with artifacts

Figure 4-1: Overview: (a) A number of realistic outdoor church images generated by Pro-
gressive GANs [Karras et al., 2018]. (b) Given a pre-trained GAN model (e.g., Progressive
GANs), we first identify a set of interpretable units, whose featuremap is highly correlated
to the region of an object class across different images. For example, one unit in layer4
can localize tree regions with diverse visual appearance. (c) We ablate the units by forcing
the activation to be zero and quantify the average casual effect of the ablation. Here we
successfully remove these trees from church images. (d) We can insert these tree causal units
to other locations. The same set of units can synthesize different trees visually compatible
with their surrounding context. In addition, our method can diagnose and improve GANs
by identifying artifact-causing units (e). We can remove the artifacts that appear in (f) and
significantly improve the results by ablating the “artifact” units (g). Please see our demo
video.

example, a door can appear on a building but not on a tree. We wish to understand

how a GAN represents such a structure. Do the objects emerge as pure pixel patterns

without any explicit representation of objects such as doors and trees, or does the

GAN contain internal variables that correspond to the objects that humans perceive?

If the GAN does contain variables for doors and trees, do those variables cause the

generation of those objects, or do they merely correlate? How are relationships between

objects represented?

We present a general method for visualizing and understanding GANs at different

levels of abstraction, from each neuron, to each object, to the contextual relationship

84

http://tiny.cc/iclrganvis

between different objects. We first identify a group of interpretable units that are

related to object concepts (Figure 4-1b). These units’ featuremaps closely match the

semantic segmentation of a particular object class (e.g., trees). Second, we directly

intervene within the network to identify sets of units that cause a type of objects

to disappear (Figure 4-1c) or appear (Figure 4-1d). We quantify the causal effect of

these units using a standard causality metric. Finally, we examine the contextual

relationship between these causal object units and the background. We study where

we can insert the object concepts in new images and how this intervention interacts

with other objects in the image (Figure 4-1d). To our knowledge, our work provides

the first systematic analysis for understanding the internal representations of GANs.

Finally, we show several practical applications enabled by this analytic framework,

from comparing internal representations across different layers, GAN variants and

datasets; to debugging and improving GANs by locating and ablating “artifact” units

(Figure 4-1e); to understanding contextual relationships between objects in scenes; to

manipulating images with interactive object-level control.

4.2 Related work

Generative Adversarial Networks. The quality and diversity of results from

GANs [Goodfellow et al., 2014] has continued to improve, from generating simple

digits and faces [Goodfellow et al., 2014], to synthesizing natural scene images [Radford

et al., 2016, Denton et al., 2015], to generating 1k photorealistic portraits [Karras et al.,

2018], to producing one thousand object classes [Miyato et al., 2018, Zhang et al., 2018].

In addition to image generation, GANs have also enabled many applications such as

visual recognition [Wang et al., 2017, Hoffman et al., 2018], image manipulation [Isola

et al., 2017, Zhu et al., 2017], and video generation [Mathieu et al., 2016, Wang et al.,

2018]. Despite the huge success, little work has been done to visualize what GANs

have learned. Prior work [Radford et al., 2016, Zhu et al., 2016] manipulates latent

vectors and observes how the results change accordingly.

Visualizing deep neural networks. Various methods have been developed

85

to understand the internal representations of networks, such as visualizations for

CNNs [Zeiler and Fergus, 2014] and RNNs [Karpathy et al., 2016, Strobelt et al., 2018].

We can visualize a CNN by locating and reconstructing salient image features [Simonyan

et al., 2014, Mahendran and Vedaldi, 2015] or by mining patches that maximize hidden

layers’ activations [Zeiler and Fergus, 2014], or we can synthesize input images to

invert a feature layer [Dosovitskiy and Brox, 2016]. Alternately, we can identify

the semantics of each unit [Zhou et al., 2015, Bau et al., 2017, Zhou et al., 2018a]

by measuring agreement between unit activations and object segmentation masks.

Visualization of an RNN has also revealed interpretable units that track long-range

dependencies [Karpathy et al., 2016]. Most previous work on network visualization

has focused on networks trained for classification; our work explores deep generative

models trained for image generation.

Explaining the decisions of deep neural networks. We can explain individual

network decisions using informative heatmaps [Zhou et al., 2018b, 2016, Selvaraju

et al., 2017] or modified back-propagation [Simonyan et al., 2014, Bach et al., 2015,

Sundararajan et al., 2017]. The heatmaps highlight which regions contribute most to

the categorical prediction given by the networks. Recent work has also studied the

contribution of feature vectors [Kim et al., 2017, Zhou et al., 2018b] or individual

channels [Olah et al., 2018] to the final prediction. Morcos et al. [2018] has examined

the effect of individual units by ablating them. Those methods explain discriminative

classifiers. Our method aims to explain how an image can be generated by a network,

which is much less explored.

4.3 Method

Our goal is to analyze how objects such as trees are encoded by the internal represen-

tations of a GAN generator 𝐺 : z → x. Here z ∈ R|𝑧| denotes a latent vector sampled

from a low-dimensional distribution, and x ∈ R𝐻×𝑊×3 denotes an 𝐻 ×𝑊 generated

image. We use representation to describe the tensor r output from a particular layer

of the generator 𝐺, where the generator creates an image x from random z through a

86

z

r
u,P

r

x

fh

r
u
↑ > t

s
c
(x)

G

z

h

IoU
u,c

r
U,P

 r
U,P

f

f

δ
U→c

force U off

force r
U,P

 on

x
a

x
i

s
c
(x

i
)

s
c
(x

a
)force r

U,P
 off

(a)

(b)

segment

segment

upsample

generate

single unit u

segment

featuremap thresholded

generated image segmentation

generator

causal units Uunforced units

ablated image

inserted image segmentation

segmentation

agreement

causal effect

Figure 4-2: Measuring the relationship between representation units and trees in the output
using (a) dissection and (b) intervention. Dissection measures agreement between a unit 𝑢 and
a concept 𝑐 by comparing its thresholded upsampled heatmap with a semantic segmentation
of the generated image 𝑠𝑐(𝑥). Intervention measures the causal effect of a set of units 𝑈 on
a concept 𝑐 by comparing the effect of forcing these units on (unit insertion) and off (unit
ablation). The segmentation 𝑠𝑐 reveals that trees increase after insertion and decrease after
ablation. The average difference in the tree pixels measures the average causal effect. In this
figure, interventions are applied to the entire featuremap P, but insertions and ablations can
also apply to any subset of pixels P ⊂ P.

composition of layers: r = ℎ(z) and x = 𝑓(r) = 𝑓(ℎ(z)) = 𝐺(z).

Since r has all the data necessary to produce the image x = 𝑓(r), r certainly

contains the information to deduce the presence of any visible class 𝑐 in the image.

Therefore the question we ask is not whether information about 𝑐 is present in r —

it is — but how such information is encoded in r. In particular, for any class from a

universe of concepts 𝑐 ∈ C, we seek to understand whether r explicitly represents 𝑐 in

some way where it is possible to factor r at locations P into two components

rU,P = (rU,P, rU,P), (4.1)

where the generation of the object 𝑐 at locations P depends mainly on the units

rU,P, and is insensitive to the other units rU,P. Here we refer to each channel of

the featuremap as a unit: U denotes the set of unit indices of interest and U is its

87

Thresholding unit #65 layer 3 of a dining room generator matches ‘table’ segmentations
with IoU=0.34.

Thresholding unit #37 layer 4 of a living room generator matches ‘sofa’ segmentations with
IoU=0.29.

Figure 4-3: Visualizing the activations of individual units in two GANs. Top ten activating
images are shown, and IoU is measured over a sample of 1000 images. In each image, the
unit feature is upsampled and thresholded as described in Eqn. 4.2.

complement; we will write U and P to refer to the entire set of units and featuremap

pixels in 𝑟. We study the structure of r in two phases:

• Dissection: starting with a large dictionary of object classes, we identify the

classes that have an explicit representation in r by measuring the agreement

between individual units of r and every class 𝑐 (Figure 4-1b).

• Intervention: for the represented classes identified through dissection, we identify

causal sets of units and measure causal effects between units and object classes

by forcing sets of units on and off (Figure 4-1c,d).

4.3.1 Characterizing units by dissection

We first focus on individual units of the representation. Recall that r𝑢,P is the one-

channel ℎ × 𝑤 featuremap of unit 𝑢 in a convolutional generator, where ℎ × 𝑤 is

typically smaller than the image size. We want to know if a specific unit r𝑢,P encodes a

semantic class such as a “tree”. For image classification networks, Bau et al. [2017] has

observed that many units can approximately locate emergent object classes when the

units are upsampled and thresholded. In that spirit, we select a universe of concepts

𝑐 ∈ C for which we have a semantic segmentation s𝑐(x) for each class. Then we

quantify the spatial agreement between the unit 𝑢’s thresholded featuremap and a

88

concept 𝑐’s segmentation with the following intersection-over-union (IoU) measure:

IoU𝑢,𝑐 ≡
Ez

⃒⃒⃒
(r↑𝑢,P > 𝑡𝑢,𝑐) ∧ s𝑐(x)

⃒⃒⃒
Ez

⃒⃒⃒
(r↑𝑢,P > 𝑡𝑢,𝑐) ∨ s𝑐(x)

⃒⃒⃒ ,where 𝑡𝑢,𝑐 = arg max
𝑡

I(r↑𝑢,P > 𝑡; s𝑐(x))

H(r↑𝑢,P > 𝑡, s𝑐(x))
, (4.2)

where ∧ and ∨ denote intersection and union operations, and x = 𝐺(z) denotes the

image generated from z. The one-channel feature map r𝑢,P slices the entire featuremap

r = ℎ(z) at unit 𝑢. As shown in Figure 4-2a, we upsample r𝑢,P to the output image

resolution as r↑𝑢,P. (r↑𝑢,P > 𝑡𝑢,𝑐) produces a binary mask by thresholding the r↑𝑢,P at a

fixed level 𝑡𝑢,𝑐. s𝑐(x) is a binary mask where each pixel indicates the presence of class

𝑐 in the generated image x. The threshold 𝑡𝑢,𝑐 is chosen to be informative as possible

by maximizing the information quality ratio I/H (using a separate validation set),

that is, it maximizes the portion of the joint entropy H which is mutual information

I [Wijaya et al., 2017].

We can use IoU𝑢,𝑐 to rank the concepts related to each unit and label each unit

with the concept that matches it best. Figure 4-3 shows examples of interpretable

units with high IoU𝑢,𝑐. They are not the only units to match tables and sofas: layer3

of the dining room generator has 31 units (of 512) that match tables and table parts,

and layer4 of the living room generator has 65 (of 512) sofa units.

Once we have identified an object class that a set of units match closely, we next

ask: which units are responsible for triggering the rendering of that object? A unit

that correlates highly with an output object might not actually cause that output.

Furthermore, any output will jointly depend on several parts of the representation.

We need a way to identify combinations of units that cause an object.

4.3.2 Measuring causal relationships using intervention

To answer the above question about causality, we probe the network using interventions:

we test whether a set of units U in r cause the generation of 𝑐 by forcing the units of

U on and off.

Recall that rU,P denotes the featuremap r at units U and locations P. We ablate

89

those units by forcing rU,P = 0. Similarly, we insert those units by forcing rU,P = k,

where k is a per-class constant, as described in Section A.4. We decompose the

featuremap r into two parts (rU,P, rU,P), where rU,P are unforced components of r:

Original image : x = 𝐺(z) ≡ 𝑓(r) ≡ 𝑓(rU,P, rU,P) (4.3)

Image with U ablated at pixels P : x𝑎 = 𝑓(0, rU,P)

Image with U inserted at pixels P : x𝑖 = 𝑓(k, rU,P)

An object is caused by U if the object appears in x𝑖 and disappears from x𝑎. Figure 4-1c

demonstrates the ablation of units that remove trees, and Figure 4-1d demonstrates

insertion of units at specific locations to make trees appear. This causality can be

quantified by comparing the presence of trees in x𝑖 and x𝑎 and averaging effects over

all locations and images. Following prior work [Holland, 1988, Pearl, 2009], we define

the average causal effect (ACE) of units U on the generation of on class 𝑐 as:

𝛿U→𝑐 ≡ Ez,P[s𝑐(x𝑖)] − Ez,P[s𝑐(x𝑎)], (4.4)

where s𝑐(x) denotes a segmentation indicating the presence of class 𝑐 in the image x

at P. To permit comparisons of 𝛿U→𝑐 between classes 𝑐 which are rare, we normalize

our segmentation s𝑐 by Ez,P[s𝑐(𝑥)]. While these measures can be applied to a single

unit, we have found that objects tend to depend on more than one unit. Thus we need

to identify a set of units U that maximize the average causal effect 𝛿U→𝑐 for an object

class 𝑐.

Finding sets of units with high ACE. Given a representation r with 𝑑 units,

exhaustively searching for a fixed-size set U with high 𝛿U→𝑐 is prohibitive as it has(︀
𝑑
|U|

)︀
subsets. Instead, we optimize a continuous intervention 𝛼 ∈ [0, 1]𝑑, where each

dimension 𝛼𝑢 indicates the degree of intervention for a unit 𝑢. We maximize the

90

Number of tree units ablated

0 5 10 20

Figure 4-4: Ablating successively larger sets of tree-causal units from a GAN trained on
LSUN outdoor church images, showing that the more units are removed, the more trees are
reduced, while buildings remain. The choice of units to ablate is specific to the tree class and
does not depend on the image. At right, the causal effect of removing successively more tree
units is plotted, comparing units chosen to optimize the average causal effect (ACE) and
units chosen with the highest IoU for trees.

following average causal effect formulation 𝛿𝛼→𝑐:

Image with partial ablation at pixels P : x′
𝑎 = 𝑓((1−𝛼) ⊙ rU,P, rU,P) (4.5)

Image with partial insertion at pixels P : x′
𝑖 = 𝑓(𝛼⊙ k + (1−𝛼) ⊙ rU,P, rU,P)

Objective : 𝛿𝛼→𝑐 = Ez,P [s𝑐(x
′
𝑖)] − Ez,P [s𝑐(x

′
𝑎)] ,

where rU,P denotes the all-channel featuremap at locations P, rU,P denotes the all-

channel featuremap at other locations P, and ⊙ applies a per-channel scaling vector 𝛼

to the featuremap rU,P. We optimize 𝛼 over the following loss with an L2 regularization:

𝛼* = arg min
𝛼

(−𝛿𝛼→𝑐 + 𝜆||𝛼||2), (4.6)

where 𝜆 controls the relative importance of each term. We add the L2 loss as we

seek a minimal set of casual units. We optimize using stochastic gradient descent,

sampling over both z and featuremap locations P and clamping the coefficient 𝛼

within the range [0, 1]𝑑 at each step (d is the total number of units). More details of

this optimization are discussed in Section A.4. Finally, we can rank units by 𝛼*
𝑢 and

achieve a stronger causal effect (i.e., removing trees) when ablating successively larger

sets of tree-causing units as shown in Figure 4-4.

91

4.4 Results

We study three variants of Progressive GANs [Karras et al., 2018] trained on LSUN

scene datasets [Yu et al., 2015]. To segment the generated images, we use a recent

model [Xiao et al., 2018] trained on the ADE20K scene dataset [Zhou et al., 2017].

The model can segment the input image into 336 object classes, 29 parts of large

objects, and 25 materials. To further identify units that specialize in object parts, we

expand each object class 𝑐 into additional object part classes c-t, c-b, c-l, and c-r,

which denote the top, bottom, left, or right half of the bounding box of a connected

component.

Below, we use dissection for analyzing and comparing units across datasets, layers,

and models (Section 4.4.1), and locating artifact units (Section 4.4.2). Then, we start

with a set of dominant object classes and use intervention to locate causal units that

can remove and insert objects in different images (Section 4.4.3 and 4.4.4). In addition,

our video demonstrates our interactive tool.

4.4.1 Comparing units across datasets, layers, and models

Emergence of individual unit object detectors We are particularly interested

in any units that are correlated with instances of an object class with diverse visual

appearances; these would suggest that GANs generate those objects using similar

abstractions as humans. Figure 4-3 illustrates two such units. In the dining room

dataset, a unit emerges to match dining table regions. More interestingly, the matched

tables have different colors, materials, geometry, viewpoints, and levels of clutter: the

only obvious commonality among these regions is the concept of a table. This unit’s

featuremap correlates to the fully supervised segmentation model [Xiao et al., 2018]

with a high IoU of 0.34.

Interpretable units for different scene categories The set of all object classes

matched by the units of a GAN provides a map of what a GAN has learned about the

data. Figure 4-5 examines units from GANs trained on four LSUN scene categories [Yu

92

http://tiny.cc/iclrganvis

 Units in scene generator Unit class distribution

iou=0.30table #96 iou=0.21person­b #91 iou=0.13seat #83

iou=0.21chandelier­l #184 iou=0.19chair­l #456 iou=0.31table #89

iou=0.12stove­t #312 iou=0.11chair­b #166 iou=0.15cabinet­b #70

iou=0.32tree #157 iou=0.25grass #14 iou=0.07dome #43

co
nf
er
en
ce
 rm

1

16

32

un
its

ce
ilin

g
wall

pe
rso

n
tab

le
se

at
flo

or

wind
ow

pa
int

ing

mon
ito

r
ch

air

silv
er

scr
ee

n

sw
ive

l ch
air
wall-

t

ce
ilin

g-b
wall-

b
tab

le-
t
tor

so

ce
ilin

g-t
se

at-
t

ce
ilin

g-l
tab

le-
l

ce
ilin

g-r
flo

or-
b

pe
rso

n-b
se

at-
b

ch
air

-b
wall-

l

pe
rso

n-t

tab
le-

r

mon
ito

r-t

tab
le-

b

sw
ive

l ch
air

-b

pa
int

ing
-b
flo

or-
l

silv
er

scr
ee

n-b
flo

or-
r

ch
air

-r

silv
er

scr
ee

n-r
ch

air
-l
ski

n
ca

rpe
t

pa
int

ed
fab

ric

12
 o

bj
ec

ts

27
 p

ar
ts

4
m

at
er

ia
ls

di
ni
ng
 ro
om

1

10

20

un
its

ce
ilin

g

wind
owch

air
tab

le sky

pa
int

ing

ch
an

de
lier

cu
rta

in
bu

ffe
t
pla

te
flo

or-
b

tab
le-

t

ch
air

-b

ce
ilin

g-r

ce
ilin

g-t

ch
air

-r
ch

air
-t
wall-

b
flo

or-
r

wind
ow

-t

tab
le-

r

ce
ilin

g-b
flo

or-
l

ch
air

-l

ce
ilin

g-l

tab
le-

b
tab

le-
l
wall-

t
wall-

l

pa
int

ing
-b
flo

or-
t

wind
ow

-l

wind
ow

-b

ch
an

de
lier

-l

ch
an

de
lier

-b
wall-

r

wind
ow

-r

ch
an

de
lier

-r

pa
int

ing
-l

ca
rpe

t
gla

ss

10
 o

bj
ec

ts

29
 p

ar
ts

2
m

at
er

ia
ls

ki
tc
he
n

1

14

27

un
its

ce
ilin

g
flo

or

wind
ow
pe

rso
n

work
 su

rfa
ce
tab

le
wall-

b

wind
ow

-b

ce
ilin

g-t

ca
bin

et-
b

ca
bin

et-
t

ce
ilin

g-b
flo

or-
b

wind
ow

-t

ce
ilin

g-l
flo

or-
t
wall-

t

ca
bin

et-
r

kitc
he

n i
sla

nd
-t
flo

or-
r

wind
ow

-r

ce
ilin

g-r

sto
ve

-t

work
 su

rfa
ce

-t

sto
ve

-r
wall-

r

ca
bin

et-
l

wind
ow

-l
wall-

l

ch
air

-b
flo

or-
l

kitc
he

n i
sla

nd
-l

ch
air

-t

work
 su

rfa
ce

-b

work
 su

rfa
ce

-l

tab
le-

t

sto
ve

-b

work
 su

rfa
ce

-r

ref
rig

era
tor

-t

micr
ow

av
e-l
gla

ss tile

6
ob

je
ct

s

34
 p

ar
ts

2
m

at
er

ia
ls

ch
ur
ch
/o
ut
do
or

1

12

24

un
its

gra
sstre

e skydo
or
roa

d

wind
owste

p

bu
ildi

ng
-t
sky

-b
sky

-r
clo

udsky
-t
sky

-l
tre

e-btre
e-t

bu
ildi

ng
-l
do

me

mou
nta

in-
l

gra
ss-

t
se

a-bsto
ne
woo

d

7
ob

je
ct

s

13
 p

ar
ts

2
m

at
er

ia
ls

Figure 4-5: Comparing representations learned by progressive GANs trained on different
scene types. The units that emerge match objects that commonly appear in the scene type:
seats in conference rooms and stoves in kitchens. Units from layer4 are shown. A unit is
counted as a class predictor if it matches a supervised segmentation class with pixel accuracy
> 0.75 and IoU > 0.05 when upsampled and thresholded. The distribution of units over
classes is shown in the right column.

et al., 2015]. The units that emerge are object classes appropriate to the scene type: for

example, when we examine a GAN trained on kitchen scenes, we find units that match

stoves, cabinets, and the legs of tall kitchen stools. Another striking phenomenon is

that many units represent parts of objects: for example, the conference room GAN

contains separate units for the body and head of a person.

Interpretable units for different network layers. In classifier networks, the

type of information explicitly represented changes from layer to layer [Zeiler and

Fergus, 2014]. We find a similar phenomenon in a GAN. Figure 4-6 compares early,

middle, and late layers of a progressive GAN with 14 internal convolutional layers.

The output of the first convolutional layer, one step away from the input 𝑧, remains

entangled: individual units do not correlate well with any object classes except for

two units that are biased towards the ceiling of the room. Mid-level layers 4 to 7 have

many units that match semantic objects and object parts. Units in layers 10 and

beyond match local pixel patterns such as materials, edges and colors. All layers are

shown in Section A.7.

93

 Units in layer Unit class distribution
layer1
512 units total

0 object units
2 part units
0 material units

iou=0.10ceiling­t layer1 #457 iou=0.07ceiling­t layer1 #194

layer4
512 units total

86 object units
149 part units
10 material units

iou=0.28sofa layer4 #37 iou=0.15fireplace layer4 #23

layer7
256 units total

59 object units
48 part units
9 material units

iou=0.23painting layer7 #15 iou=0.07coffee table­t #247

layer10
128 units total

19 object units
8 part units
11 material units

iou=0.14carpet layer10 #53 iou=0.21glass layer10 #126

11

2

un
its

ce
ilin

g-t

1
pa

rt

1

12

24

un
its

ce
ilin

g

wind
owso

fa

pa
int

ingflo
or

cu
rta

in

co
ffe

e t
ab

le

bo
ok

ca
se

fire
pla

ce
sh

elf skyso
fa-

t
so

fa-
b

flo
or-

b

wind
ow

-t

ce
ilin

g-t
wall-

b
so

fa-
l

flo
or-

r

ce
ilin

g-b

wind
ow

-b
flo

or-
l
wall-

t

ce
ilin

g-r

wind
ow

-r
wall-

l

ce
ilin

g-l
so

fa-
r
wall-

r

pa
int

ing
-b

fire
pla

ce
-r

fire
pla

ce
-t

wind
ow

-l
sh

elf
-t

cu
rta

in-
t

pa
int

ing
-r

co
ffe

e t
ab

le-
r

co
ffe

e t
ab

le-
t

pa
int

ing
-l

ca
rpe

t
gla

ss

11
 o

bj
ec

ts

28
 p

ar
ts

2
m

at
er

ia
ls

1

7

14

un
its

ce
ilin

g

wind
owso

fa
flo

or

cu
rta

in

pa
int

ing

fire
pla

ce

bo
ok

ca
se sky

co
ffe

e t
ab

le

ch
an

de
lier

cu
sh

ion
ca

rpe
t

so
fa-

b

ce
ilin

g-t

flo
or-

b
wall-

b

ce
ilin

g-b
so

fa-
t

pa
int

ing
-t
wall-

l

wind
ow

-t

co
ffe

e t
ab

le-
t

flo
or-

r

wind
ow

-b
flo

or-
t

so
fa-

l

ce
ilin

g-r

wind
ow

-r

pa
int

ing
-b

co
ffe

e t
ab

le-
r

ca
rpe

t
gla

ss
woo

d

13
 o

bj
ec

ts

18
 p

ar
ts

3
m

at
er

ia
ls

1

3

6

un
its

ce
ilin

g

wind
owpla

nt sky

pa
int

ing
cu

rta
in
flo

or

wind
ow

-t

flo
or-

b
wall-

b

ce
ilin

g-t

wind
ow

-b
woo

d
gla

ss
ca

rpe
t

7
ob

je
ct

s

5
pa

rts

3
m

at
er

ia
ls

Figure 4-6: Comparing layers of a progressive GAN trained to generate LSUN living room
images. The output of the first convolutional layer has almost no units that match semantic
objects, but many objects emerge at layers 4-7. Later layers are dominated by low-level
materials, edges and colors.

Interpretable units for different GAN models. Interpretable units can provide

insights about how GAN architecture choices affect the structures learned inside

a GAN. Figure 4-7 compares three models from Karras et al. [2018]: a baseline

Progressive GANs, a modification that introduces minibatch stddev statistics, and a

further modification that adds pixelwise normalization. By examining unit semantics,

we confirm that providing minibatch stddev statistics to the discriminator increases

not only the realism of results, but also the diversity of concepts represented by units:

the number of types of objects, parts, and materials matching units increases by more

than 40%. The pixelwise normalization increases the number of units that match

semantic classes by 19%.

4.4.2 Diagnosing and improving GANs

While our framework can reveal how GANs succeed in producing realistic images,

it can also analyze the causes of failures in their results. Figure 4-8a shows several

annotated units that are responsible for typical artifacts consistently appearing across

different images. We can identify these units efficiently by human annotation: out of a

94

 interpretable units SWD Best "bed" unit Best "window" unit Unit class distribution
base prog GAN
512 units total

74 object units
84 part units
9 material units

iou=0.18bed layer4 #253 iou=0.19window layer4 #142

+batch stddev
512 units total

55 object units
128 part units
6 material units

iou=0.11bed layer4 #88 iou=0.25window layer4 #422

+pixelwise norm
512 units total

82 object units
128 part units
16 material units

iou=0.29bed layer4 #129 iou=0.26window layer4 #494

167 units 7.60

1

16

31

un
its

ce
ilin

g

wind
owbe

d
flo

or

cu
rta

in
do

or

ce
ilin

g-t
be

d-b

wind
ow

-t
be

d-r

ce
ilin

g-l

wind
ow

-r
flo

or-
b

ce
ilin

g-r

wind
ow

-b

wind
ow

-l
be

d-l
be

d-t

ce
ilin

g-b
flo

or-
l
sky

-t

sn
ow

-b
gla

ss
fab

ric

6
ob

je
ct

s

16
 p

ar
ts

2
m

at
er

ia
ls

189 units 6.48

1

8

15

un
its

wind
ow
ce

ilin
g
flo

orbe
d

pa
int

ing
cu

rta
in
pill

ow

ch
es

t o
f d

raw
ers

cu
sh

ionbe
d-l

ce
ilin

g-l
be

d-r

ce
ilin

g-r
be

d-b
flo

or-
r

flo
or-

l

ce
ilin

g-t
be

d-t

ce
ilin

g-b
flo

or-
b
wall-

b

wind
ow

-t

pa
int

ing
-b

wind
ow

-l

cu
rta

in-
t

wind
ow

-r

wind
ow

-b
wall-

l
flo

or-
t

pa
int

ing
-t

pa
int

ing
-r

cu
rta

in-
b
woo

d
ca

rpe
t

9
ob

je
ct

s

23
 p

ar
ts

2
m

at
er

ia
ls

226 units 4.01

1

12

24

un
its

wind
owbe

d
ce

ilin
g
flo

or

cu
rta

in

pa
int

ing
pill

ow
wate

r

cu
sh

ion
be

d-bbe
d-t
be

d-l
be

d-r
wall-

b

ce
ilin

g-t

ce
ilin

g-l

wind
ow

-t

wind
ow

-r

wind
ow

-b
flo

or-
t

flo
or-

l
flo

or-
r

cu
rta

in-
b

ce
ilin

g-r
flo

or-
b

wind
ow

-l
sky

-t

ce
ilin

g-b

cu
rta

in-
t

cu
rta

in-
r

pa
int

ing
-b
gla

ss
ca

rpe
t

9
ob

je
ct

s

22
 p

ar
ts

2
m

at
er

ia
ls

Figure 4-7: Comparing layer4 representations learned by different training variations. Sliced
Wasserstein Distance (SWD) is a GAN quality metric suggested by Karras et al. [2018]: lower
SWD indicates more realistic image statistics. Note that as the quality of the model improves,
the number of interpretable units also rises. Progressive GANs apply several innovations
including making the discriminator aware of minibatch statistics, and pixelwise normalization
at each layer. We can see batch awareness increases the number of object classes matched by
units, and pixel norm (applied in addition to batch stddev) increases the number of units
matching objects.

Table 4.1: We compare generated images before and after ablating 20 “artifact” units. We
also report a simple baseline that ablates 20 randomly chosen units.

Fréchet Inception Distance (FID)

original images 43.16
“artifacts” units ablated (ours) 27.14

random units ablated 43.17

Human preference score vs original images

“artifacts” units ablated (ours) 72.4%
random units ablated 49.9%

sample of 1000 images, we visualize the top ten highest activating images for each

unit, and we manually identify units with noticeable artifacts in this set. It typically

takes 10 minutes to locate 20 artifact-causing units out of 512 units in layer4.

More importantly, we can fix these errors by ablating the above 20 artifact-causing

units. Figure 4-8b shows that artifacts are successfully removed, and the artifact-free

pixels stay the same, improving the generated results. In Table 4.1 we report two

standard metrics, comparing our improved images to both the original artifact images

and a simple baseline that ablates 20 randomly chosen units. First, we compute the

widely used Fréchet Inception Distance [Heusel et al., 2017] between the generated

images and real images. We use 50, 000 real images and generate 10, 000 images

with high activations on these units. Second, we score 1, 000 images per method on

Amazon MTurk, collecting 20, 000 human annotations regarding whether the modified

95

(a) Example artifact-causing units (c) Ablating “artifact” units improves results

(b) Bedroom images with artifacts

Unit#231
Unit#63

Figure 4-8: (a) We show two example units that are responsible for visual artifacts in GAN
results. There are 20 units in total. By ablating these units, we can fix the artifacts in (b)
and significantly improve the visual quality as shown in (c).

image looks more realistic compared to the original. Both metrics show significant

improvements. Strikingly, this simple manual change to a network beats state-of-the-

art GANs models. The manual identification of “artifact” units can be approximated

by an automatic scoring of the realism of each unit, as detailed in Section A.1.

4.4.3 Locating causal units with ablation

Errors are not the only type of output that can be affected by directly intervening in

a GAN. A variety of specific object types can also be removed from GAN output by

ablating a set of units in a GAN. In Figure 4-9 we apply the method in Section 4.3.2 to

identify sets of 20 units that have causal effects on common object classes in conference

rooms scenes. We find that, by turning off these small sets of units, most of the output

of people, curtains, and windows can be removed from the generated scenes. However,

not every object can be erased: tables and chairs cannot be removed. Ablating those

units will reduce the size and density of these objects, but will rarely eliminate them.

The ease of object removal depends on the scene type. Figure 4-10 shows that,

while windows can be removed well from conference rooms, they are more difficult

to remove from other scenes. In particular, windows are just as difficult to remove

from a bedroom as tables and chairs from a conference room. We hypothesize that the

difficulty of removal reflects the level of choice that a GAN has learned for a concept:

a conference room is defined by the presence of chairs, so they cannot be altered. And

96

ablate person units ablate curtain units

ablate table unitsablate window units ablate chair units

Figure 4-9: Measuring the effect of ablating units in a GAN trained on conference room
images. Five different sets of units have been ablated related to a specific object class. In each
case, 20 (out of 512) units are ablated from the same GAN model. The 20 units are specific
to the object class and independent of the image. The average causal effect is reported as
the portion of pixels that are removed in 1 000 randomly generated images. We observe that
some object classes are easier to remove cleanly than others: a small ablation can erase most
pixels for people, curtains, and windows, whereas a similar ablation for tables and chairs
only reduces object sizes without deleting them.

modern building codes mandate that all bedrooms must have windows; the GAN

seems to have caught on to that pattern.

4.4.4 Characterizing contextual relationships via insertion

We can also learn about the operation of a GAN by forcing units on and inserting

these features into specific locations in scenes. Figure 4-11 shows the effect of inserting

20 layer4 causal door units in church scenes. In this experiment, we insert these

units by setting their activation to the fixed mean value for doors (further details in

Section A.4). Although this intervention is the same in each case, the effects vary

widely depending on the objects’ surrounding context. For example, the doors added

to the five buildings in Figure 4-11 appear with a diversity of visual attributes, each

with an orientation, size, material, and style that matches the building.

We also observe that doors cannot be added in most locations. The locations where

a door can be added are highlighted by a yellow box. The bar chart in Figure 4-11

shows average causal effects of insertions of door units, conditioned on the background

object class at the location of the intervention. We find that the GAN allows doors to

be added in buildings, particularly in plausible locations such as where a window is

97

conference room church

living roomkitchen bedroom

Figure 4-10: Comparing the effect of ablating 20 window-causal units in GANs trained on five
scene categories. In each case, the 20 ablated units are specific to the class and the generator
and independent of the image. In some scenes, windows are reduced in size or number rather
than eliminated, or replaced by visually similar objects such as paintings.

present, or where bricks are present. Conversely, it is not possible to trigger a door in

the sky or on trees. Interventions provide insight on how a GAN enforces relationships

between objects. Even if we try to add a door in layer4, that choice can be vetoed

later if the object is not appropriate for the context. These downstream effects are

further explored in Section A.5.

4.5 Discussion
By carefully examining representation units, we have found that many parts of GAN

representations can be interpreted, not only as signals that correlate with object

concepts but as variables that have a causal effect on the synthesis of objects in the

output. These interpretable effects can be used to compare, debug, modify, and reason

about a GAN model. Our method can be potentially applied to other generative

models such as VAEs [Kingma and Welling, 2014] and RealNVP [Dinh et al., 2017].

We have focused on the generator rather than the discriminator (as did in Radford

et al. [2016]) because the generator must represent all the information necessary to

approximate the target distribution, while the discriminator only learns to capture

the difference between real and fake images. Alternatively, we can train an encoder

to invert the generator [Donahue et al., 2017, Dumoulin et al., 2017]. However, this

incurs additional complexity and errors. Many GANs also do not have an encoder.

98

(a) (b)

(d)(c) (e)

Figure 4-11: Inserting door units by setting 20 causal units to a fixed high value at one pixel
in the representation. Whether the door units can cause the generation of doors is dependent
on its local context: we highlight every location that is responsive to insertions of door units
on top of the original image, including two separate locations in (b) (we intervene at left).
The same units are inserted in every case, but the door that appears has a size, alignment,
and color appropriate to the location. One way to add door pixels is to emphasize a door
that is already present, resulting in a larger door (d). The chart summarizes the causal effect
of inserting door units at one pixel with different contexts.

Our method is not designed to compare the quality of GANs to one another, and

it is not intended as a replacement for well-studied GAN metrics such as FID, which

estimate realism by measuring the distance between the generated distribution of

images and the true distribution (Borji [2018] surveys these methods). Instead, our

goal has been to identify the interpretable structure and provide a window into the

internal mechanisms of a GAN.

Prior visualization methods [Zeiler and Fergus, 2014, Bau et al., 2017, Karpathy

et al., 2016] have brought new insights into CNN and RNNs research. Motivated by

that, in this work we have taken a small step towards understanding the internal

representations of a GAN, and we have uncovered many questions that we cannot yet

answer with the current method. For example: why can a door not be inserted in the

sky? How does the GAN suppress the signal in the later layers? Further work will be

needed to understand the relationships between layers of a GAN. Nevertheless, we

hope that our work can help researchers and practitioners better analyze and develop

their own GANs.

99

Bibliography

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-

Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PloS one, 10(7), 2015.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network

dissection: Quantifying interpretability of deep visual representations. In CVPR,

2017.

Ali Borji. Pros and cons of gan evaluation measures. arXiv preprint arXiv:1802.03446,

2018.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models

using a laplacian pyramid of adversarial networks. In NeurIPS, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real

nvp. In ICLR, 2017.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning.

In ICLR, 2017.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity

metrics based on deep networks. In NeurIPS, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier

Mastropietro, and Aaron Courville. Adversarially learned inference. In ICLR, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In NeurIPS, 2017.

100

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,

Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain

adaptation. In ICML, 2018.

Paul W Holland. Causal inference, path analysis and recursive structural equations

models. ETS Research Report Series, 1988(1):i–50, 1988.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In CVPR, 2017.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding

recurrent networks. In ICLR, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

Been Kim, Justin Gilmer, Fernanda Viegas, Ulfar Erlingsson, and Martin Wattenberg.

Tcav: Relative concept importance testing with linear concept activation vectors.

arXiv preprint arXiv:1711.11279, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR,

2014.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In CVPR, 2015.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction

beyond mean square error. In ICLR, 2016.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral

normalization for generative adversarial networks. In ICLR, 2018.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the

importance of single directions for generalization. In ICLR, 2018.

101

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather-

ine Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill,

3(3):e10, 2018.

Judea Pearl. Causality. Cambridge university press, 2009.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. In ICLR, 2016.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In ICCV, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. In ICLR

Workshop, 2014.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M. Rush.

LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural

networks. IEEE TVCG, 24(1):667–676, Jan 2018.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In PMLR, 2017.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz,

and Bryan Catanzaro. Video-to-video synthesis. In NeurIPS, 2018.

Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive

generation via adversary for object detection. In CVPR, 2017.

Dedy Rahman Wijaya, Riyanarto Sarno, and Enny Zulaika. Information quality

ratio as a novel metric for mother wavelet selection. Chemometrics and Intelligent

Laboratory Systems, 160:59–71, 2017.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual

parsing for scene understanding. In ECCV, 2018.

102

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong

Xiao. Lsun: Construction of a large-scale image dataset using deep learning with

humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention

generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Object detectors emerge in deep scene cnns. In ICLR, 2015.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. Scene parsing through ade20k dataset. In CVPR, 2017.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual

representations via network dissection. PAMI, 2018a.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decom-

position for visual explanation. In ECCV, pages 119–134, 2018b.

Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, and Alexei A

Efros. Learning dense correspondence via 3d-guided cycle consistency. In CVPR,

2016.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative

visual manipulation on the natural image manifold. In ECCV, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In ICCV, 2017.

103

104

Chapter 5

Seeing what a GAN Cannot Generate
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,
Joshua B. Tenenbaum, William T. Freeman,
Antonio Torralba. ICCV 2019.

5.1 Introduction

The remarkable ability of a Generative Adversarial Network (GAN) to synthesize

realistic images leads us to ask: How can we know what a GAN is unable to generate?

Mode-dropping or mode collapse, where a GAN omits portions of the target distri-

bution, is seen as one of the biggest challenges for GANs [Goodfellow, 2016, Li and

Malik, 2018], yet current analysis tools provide little insight into this phenomenon in

state-of-the-art GANs.

Our paper aims to provide detailed insights about dropped modes. Our goal is not

to measure GAN quality using a single number: existing metrics such as Inception

scores [Salimans et al., 2016] and Fréchet Inception Distance [Heusel et al., 2017] focus

on that problem. While those numbers measure how far the generated and target

distributions are from each other, we instead seek to understand what is different

between real and fake images. Existing literature typically answers the latter question

by sampling generated outputs, but such samples only visualize what a GAN is capable

of doing. We address the complementary problem: we want to see what a GAN cannot

105

original image x generated image original image x generated imageobject statistics in generated vs training distributions

Ch
ur

ch
 P

ro
GA

N

Figure 5-1: Seeing what a GAN cannot generate: (a) We compare the distribution of object
segmentations in the training set of LSUN churches Yu et al. [2015] to the distribution in the
generated results: objects such as people, cars, and fences are dropped by the generator. (b)
We compare pairs of a real image and its reconstruction in which individual instances of a
person and a fence cannot be generated. In each block, we show a real photograph (top-left),
a generated reconstruction (top-right), and segmentation maps for both (bottom).
generate.

In particular, we wish to know: Does a GAN deviate from the target distribution

by ignoring difficult images altogether? Or are there specific, semantically meaningful

parts and objects that a GAN decides not to learn about? And if so, how can we

detect and visualize these missing concepts that a GAN does not generate?

Image generation methods are typically tested on images of faces, objects, or scenes.

Among these, scenes are an especially fertile test domain as each image can be parsed

into clear semantic components by segmenting the scene into objects. Therefore, we

propose to directly understand mode dropping by analyzing a scene generator at two

levels: the distribution level and instance level.

First, we characterize omissions in the distribution as a whole, using Generated

Image Segmentation Statistics : we segment both generated and ground truth images

and compare the distributions of segmented object classes. For example, Figure 5-1a

shows that in a church GAN model, object classes such as people, cars, and fences

appear on fewer pixels of the generated distribution as compared to the training

distribution.

Second, once omitted object classes are identified, we want to visualize specific

examples of failure cases. To do so, we must find image instances where the GAN should

generate an object class but does not. We find such cases using a new reconstruction

method called Layer Inversion which relaxes reconstruction to a tractable problem.

106

Instead of inverting the entire GAN, our method inverts a layer of the generator.

Unlike existing methods to invert a small generator [Zhu et al., 2016, Brock et al.,

2017], our method allows us to create reconstructions for complex, state-of-the-art

GANs. Deviations between the original image and its reconstruction reveal image

features and objects that the generator cannot draw faithfully.

We apply our framework to analyze several recent GANs trained on different scene

datasets. Surprisingly, we find that dropped object classes are not distorted or rendered

in a low quality or as noise. Instead, they are simply not rendered at all, as if the

object was not part of the scene. For example, in Figure 5-1b, we observe that large

human figures are skipped entirely, and the parallel lines in a fence are also omitted.

Thus a GAN can ignore classes that are too hard, while at the same time producing

outputs of high average visual quality. Code, data, and additional information are

available at https://ganseeing.csail.mit.edu.

5.2 Related work

Generative Adversarial Networks [Goodfellow et al., 2014] have enabled

many computer vision and graphics applications such as generation Brock et al. [2019],

Karras et al. [2018, 2019], image and video manipulation Huang et al. [2018], Isola

et al. [2017], Park et al. [2019], Sangkloy et al. [2017], Taigman et al. [2017], Wang et al.

[2018], Zhu et al. [2017], object recognition Bousmalis et al. [2017], Wang et al. [2017],

and text-to-image translation Reed et al. [2016], Xu et al. [2018], Zhang et al. [2017].

One important issue in this emerging topic is how to evaluate and compare different

methods Theis et al. [2016], Wu et al. [2017a]. For example, many evaluation metrics

have been proposed to evaluate unconditional GANs such as Inception score Salimans

et al. [2016], Fréchet Inception Distance Heusel et al. [2017], and Wasserstein Sliced

Distance Karras et al. [2018]. Though the above metrics can quantify different aspects

of model performance, they cannot explain what visual content the models fail to

synthesize. Our goal here is not to introduce a metric. Instead, we aim to provide

explanations of a common failure case of GANs: mode collapse. Our error diagnosis

107

https://ganseeing.csail.mit.edu

tools complement existing single-number metrics and can provide additional insights

into the model’s limitations.

Network inversion. Prior work has found that inversions of GAN generators are

useful for photo manipulation [Bau et al., 2019a, Brock et al., 2017, Peleg and Wolf,

2018, Zhu et al., 2016] and unsupervised feature learning Donahue et al. [2017],

Dumoulin et al. [2017]. Later work found that DCGAN left-inverses can be computed

to high precision Lipton and Tripathi [2017], Yeh et al. [2017], and that inversions

of a GAN for glyphs can reveal specific strokes that the generator is unable to

generate Creswell and Bharath [2018]. While previous work Zhu et al. [2016] has

investigated inversion of 5-layer DCGAN generators, we find that when moving to a

15-layer Progressive GAN, high-quality inversions are much more difficult to obtain.

Omissions of a generator can also be estimated using Monte Carlo methods to sample

the modeled posterior near a target image Wu et al. [2017b]. In our work, we develop

a layer-wise inversion method that is effective for large-scale GANs. We apply a classic

layer-wise training approach Bengio et al. [2007], Hinton and Salakhutdinov [2006] to

the problem of training an encoder and further introduce layer-wise image-specific

optimization. Our work is also loosely related to inversion methods for understanding

CNN features and classifiers Dosovitskiy and Brox [2016], Mahendran and Vedaldi

[2015], Olah et al. [2017, 2018]. However, we focus on understanding generative models

rather than classifiers.

Understanding and visualizing networks. Most prior work on network visualiza-

tion concerns discriminative classifiers Bach et al. [2015], Bau et al. [2017], Kindermans

et al. [2017], Lundberg and Lee [2017], Smilkov et al. [2017], Springenberg et al. [2014],

Zeiler and Fergus [2014], Zhou et al. [2014]. GANs have been visualized by examining

the discriminator Radford et al. [2016] and the semantics of internal features Bau

et al. [2019b]. Different from recent work Bau et al. [2019b] that aims to understand

what a GAN has learned, our work provides a complementary perspective and focuses

on what semantic concepts a GAN fails to capture.

108

5.3 Method

Our goal is to visualize and understand the semantic concepts that a GAN generator

cannot generate, in both the entire distribution and in each image instance. We will

proceed in two steps. First, we measure Generated Image Segmentation Statistics

by segmenting both generated and target images and identifying types of objects

that a generator omits when compared to the distribution of real images. Second,

we visualize how the dropped object classes are omitted for individual images by

finding real images that contain the omitted classes and projecting them to their best

reconstruction given an intermediate layer of the generator. We call the second step

Layer Inversion.

5.3.1 Quantifying distribution-level mode collapse

The systematic errors of a GAN can be analyzed by exploiting the hierarchical structure

of a scene image. Each scene has a natural decomposition into objects, so we can

estimate deviations from the true distribution of scenes by estimating deviations of

constituent object statistics. For example, a GAN that renders bedrooms should also

render some amount of curtains. If the curtain statistics depart from what we see in

true images, we will know we can look at curtains to see a specific flaw in the GAN.

To implement this idea, we segment all the images using the Unified Perceptual

Parsing network [Xiao et al., 2018], which labels each pixel of an image with one of

336 object classes. Over a sample of images, we measure the total area in pixels for

each object class and collect mean and covariance statistics for all segmented object

classes. We sample these statistics over a large set of generated images as well as

training set images. We call the statistics over all object segmentations Generated

Image Segmentation Statistics.

Figure 5-2 visualizes mean statistics for two networks. In each graph, the mean

segmentation frequency for each generated object class is compared to that seen in the

true distribution. Since most classes do not appear on most images, we focus on the

most common classes by sorting classes by descending frequency. The comparisons can

109

WGAN-GP on LSUN Bedrooms StyleGAN on LSUN Bedrooms

Figure 5-2: Using Generated Image Segmentation Statistics to understand the different
behavior of the two models trained on LSUN bedrooms Yu et al. [2015]. The histograms
reveal that WGAN-GP Gulrajani et al. [2017] (left) deviates from the true distribution
much more than StyleGAN Karras et al. [2019] (right), identifying segmentation classes that
are generated too little and others that are generated too much. For example, WGAN-GP
does not generate enough pixels containing beds, curtains, or cushions compared to the
true distribution of bedroom images, while StyleGAN correctly matches these statistics.
StyleGAN is still not perfect, however, and does not generate enough doors, wardrobes, or
people. Numbers above bars indicate clipped values beyond the range of the chart.

reveal many specific differences between recent state-of-the-art models. Both analyzed

models are trained on the same image distribution (LSUN bedrooms Yu et al. [2015]),

but WGAN-GP Gulrajani et al. [2017] departs from the true distribution much more

than StyleGAN Karras et al. [2019].

It is also possible to summarize statistical differences in segmentation in a single

number. To do this, we define the Fréchet Segmentation Distance (FSD), which is an

interpretable analog to the popular Fréchet Inception Distance (FID) metric [Heusel

et al., 2017]: FSD ≡ ||𝜇𝑔 − 𝜇𝑡||2 + Tr(Σ𝑔 + Σ𝑡 − 2(Σ𝑔Σ𝑡)
1/2). In our FSD formula, 𝜇𝑡

is the mean pixel count for each object class over a sample of training images, and

Σ𝑡 is the covariance of these pixel counts. Similarly, 𝜇𝑔 and Σ𝑔 reflect segmentation

statistics for the generative model. In our experiments, we compare statistics between

10,000 generated samples and 10,000 natural images.

Generated Image Segmentation Statistics measure the entire distribution: for

example, they reveal when a generator omits a particular object class. However, they

do not single out specific images where an object should have been generated but was

not. To gain further insight, we need a method to visualize omissions of the generator

110

for each image.

5.3.2 Quantifying instance-level mode collapse

To address the above issue, we compare image pairs (x,x′), where x is a real image

that contains a particular object class dropped by a GAN generator 𝐺, and x′ is a

projection onto the space of all images that can be generated by a layer of the GAN

model.

Defining a tractable inversion problem. In the ideal case, we would like to find

an image that can be perfectly synthesized by the generator 𝐺 and stay close to the

real image x. Formally, we seek x′ = 𝐺(z*), where z* = arg minz ℓ(𝐺(z),x) and ℓ is

a distance metric in image feature space. Unfortunately, as shown in Section 5.4.4,

previous methods Donahue et al. [2017], Zhu et al. [2016] fail to solve this full inversion

problem for recent generators due to the large number of layers in 𝐺. Therefore, we

instead solve a tractable subproblem of full inversion. We decompose the generator 𝐺

into layers

𝐺 = 𝐺𝑓 (𝑔𝑛(· · · ((𝑔1(z)))), (5.1)

where 𝑔1, ..., 𝑔𝑛 are several early layers of the generator, and 𝐺𝑓 groups all the later

layers of the 𝐺 together.

Any image that can be generated by 𝐺 can also be generated by 𝐺𝑓 . That is,

if we denote by range(𝐺) the set of all images that can be output by 𝐺, then we

have range(𝐺) ⊂ range(𝐺𝑓). That implies, conversely, that any image that cannot be

generated by 𝐺𝑓 cannot be generated by 𝐺 either. Therefore any omissions we can

identify in range(𝐺𝑓) will also be omissions of range(𝐺).

Thus for layer inversion, we visualize omissions by solving the easier problem of

111

inverting the later layers 𝐺𝑓 :

x′ = 𝐺𝑓 (r*), (5.2)

where r* = arg min
r

ℓ(𝐺𝑓 (r),x).

Although we ultimately seek an intermediate representation r, it will be helpful

to begin with an estimated z: an initial guess for z helps us regularize our search

to favor values of r that are more likely to be generated by a z. Therefore, we solve

the inversion problem in two steps: First we construct a neural network 𝐸 that

approximately inverts the entire 𝐺 and computes an estimate z0 = 𝐸(x). Subsequently

we solve an optimization problem to identify an intermediate representation r* ≈

r0 = 𝑔𝑛(· · · (𝑔1(z0))) that generates a reconstructed image 𝐺𝑓 (r*) to closely recover x.

Figure 5-3 illustrates our layer inversion method.

Layer-wise network inversion. A deep network can be trained more easily by

pre-training individual layers on smaller problems Hinton and Salakhutdinov [2006].

Therefore, to learn the inverting neural network 𝐸, we also proceed layer-wise. For

each layer 𝑔𝑖 ∈ {𝑔1, ..., 𝑔𝑛, 𝐺𝑓}, we train a small network 𝑒𝑖 to approximately invert

𝑔𝑖. That is, defining r𝑖 = 𝑔𝑖(r𝑖−1), our goal is to learn a network 𝑒𝑖 that approximates

the computation r𝑖−1 ≈ 𝑒𝑖(r𝑖). We also want the predictions of the network 𝑒𝑖 to well

preserve the output of the layer 𝑔𝑖, so we want r𝑖 ≈ 𝑔𝑖(𝑒𝑖(r𝑖)). We train 𝑒𝑖 to minimize

both left- and right-inversion losses:

ℒL ≡ Ez[||r𝑖−1 − 𝑒(𝑔𝑖(r𝑖−1))||1]

ℒR ≡ Ez[||r𝑖 − 𝑔𝑖(𝑒(r𝑖))||1]

𝑒𝑖 = arg min
𝑒

ℒL + 𝜆RℒR, (5.3)

To focus on training near the manifold of representations produced by the generator,

we sample z and then use the layers 𝑔𝑖 to compute samples of r𝑖−1 and r𝑖, so r𝑖−1 =

𝑔𝑖−1(· · · 𝑔1(z) · · ·). Here || · ||1 denotes an L1 loss, and we set 𝜆𝑅 = 0.01 to emphasize

the reconstruction of r𝑖−1.

112

generator Gencoder E

loss

reconstruction
Gf(r*)

target x

nth layer

z0 r0

G(z0)

target x

r Gf

Step 2: initialize
z0 = E(x)

r0 = gn(…(g1(z0)))

Step 3: optimize
Gf(r) à x

r ≈ r0

+δiz0

generator G encoder E

z

synthesized
G(z)

z'

loss

Step 1: train
encoder E
E(G(z)) à z

Gf

Gf

Figure 5-3: Overview of our layer inversion method. First, we train a network 𝐸 to invert
𝐺; this is used to obtain an initial guess of the latent z0 = 𝐸(x) and its intermediate
representation r0 = 𝑔𝑛(· · · (𝑔1(z0))). Then r0 is used to initialize a search for r* to obtain a
reconstruction x′ = 𝐺𝑓 (r

*) close to the target x.

Once all the layers are inverted, we can compose an inversion network for all of 𝐺:

𝐸* = 𝑒1(𝑒2(· · · (𝑒𝑛(𝑒𝑓 (x))))). (5.4)

The results can be further improved by jointly fine-tuning this composed network 𝐸*

to invert 𝐺 as a whole. We denote this fine-tuned result as 𝐸.

Layer-wise image optimization. As described at the beginning of Section 5.3.2,

inverting the entire 𝐺 is difficult: 𝐺 is non-convex, and optimizations over z are quickly

trapped in local minima. Therefore, after obtaining a decent initial guess for z, we

113

turn our attention to the more relaxed optimization problem of inverting the layers

𝐺𝑓 ; that is, starting from r0 = 𝑔𝑛(· · · (𝑔1(z0))), we seek an intermediate representation

r* that generates a reconstructed image 𝐺𝑓 (r*) to closely recover x.

To regularize our search to favor r that are close to the representations computed

by the early layers of the generator, we search for r that can be computed by making

small perturbations of the early layers of the generator:

z0 ≡ 𝐸(x)

r ≡ 𝛿𝑛 + 𝑔𝑛(· · · (𝛿2 + 𝑔2(𝛿1 + 𝑔1(z0))))

r* = arg min
r

(︃
ℓ(x, 𝐺𝑓 (r)) + 𝜆reg

∑︁
𝑖

||𝛿𝑖||2
)︃

(5.5)

ℓ(x,x𝑔) ≡ ||x− x𝑔||1 + 𝜆V||V(x) − V(x𝑔)||1.

That is, we begin with the guess z0 given by the neural network 𝐸, and then we learn

small perturbations of each layer before the 𝑛-th layer, to obtain an r that reconstructs

the image x well. For ℓ we sum image pixel loss and VGG perceptual loss Simonyan

and Zisserman [2015], similar to existing reconstruction methods Dosovitskiy and Brox

[2016], Zhu et al. [2016]; we set 𝜆V = 1. The hyper-parameter 𝜆reg determines the

balance between image reconstruction loss and the regularization of r. We set 𝜆reg = 1

in our experiments.

5.4 Results

Implementation details. We analyze three recent models: WGAN-GP [Gulrajani

et al., 2017], Progressive GAN [Karras et al., 2018], and StyleGAN [Karras et al., 2019],

trained on LSUN bedroom images [Yu et al., 2015]. In addition, for Progressive GAN

we analyze a model trained to generate LSUN church images. To segment images, we

use the Unified Perceptual Parsing network [Xiao et al., 2018], which labels each pixel

of an image with one of 336 object classes. Segmentation statistics are computed over

samples of 10,000 images.

114

Figure 5-4: Sensitivity test for Generated Image Segmentation Statistics. This plot compares
two different random samples of 10, 000 images from the LSUN bedroom dataset. An infinite-
sized sample would show no differences; the observed differences reveal the small measurement
noise introduced by the finite sampling process.

original image x generated image original image x generated imageobject statistics in generated vs training distributions

Be
dr

oo
m

 P
ro

GA
N

Figure 5-5: A visualization of the omissions of a bedroom generator; a Progressive GAN for
LSUN bedrooms is tested. On top, a comparison of object distributions shows that many
classes of objects are left out by the generator, including people, cushions, carpets, lamps, and
several types of furniture. On the bottom, photographs are shown with their reconstructions
𝐺(𝐸(x)), along with segmentations. These examples directly reveal many object classes
omitted by the bedroom generator.

115

5.4.1 Generated Image Segmentation Statistics

We first examine whether segmentation statistics correctly reflect the output quality

of models across architectures. Figure 5-2 and Figure 5-5 show Generated Image

Segmentation Statistics for WGAN-GP [Gulrajani et al., 2017], StyleGAN [Karras

et al., 2019], and Progressive GAN [Karras et al., 2018] trained on LSUN bedrooms [Yu

et al., 2015]. The histograms reveal that, for a variety of segmented object classes,

StyleGAN matches the true distribution of those objects better than Progressive GAN,

while WGAN-GP matches least closely. The differences can be summarized using

Fréchet Segmentation Distance (Table 5.1), confirming that better models match the

segmented statistics better overall.

Model FSD

WGAN-GP Gulrajani et al. [2017] bedrooms (Figure 5-2) 428.4
ProGAN Karras et al. [2018] bedrooms (Figure 5-5) 85.2
StyleGAN Karras et al. [2019] bedrooms (Figure 5-2) 22.6

Table 5.1: FSD summarizes Generated Image Segmentation Statistics.

5.4.2 Sensitivity test

Figure 5-4 illustrates the sensitivity of measuring Generated Image Segmentation

Statistics over a finite sample of 10,000 images. Instead of comparing a GAN to the

true distribution, we compare two different randomly chosen subsamples of the LSUN

bedroom data set to each other. A perfect test with infinite sample sizes would show

no difference; the small differences shown reflect the sensitivity of the test and are due

to sampling error.

5.4.3 Identifying dropped modes

Figure 5-1 and Figure 5-5 show the results of applying our method to analyze the

generated segmentation statistics for Progressive GAN models of churches and bed-

rooms. Both the histograms and the instance visualizations provide insight into the

limitations of the generators.

116

The histograms reveal that the generators partially skip difficult subtasks. For

example, neither model renders as many people as appear in the target distribution.

We use inversion to create reconstructions of natural images that include many pixels

of people or other under-represented objects. Figure 5-1 and Figure 5-5 each shows

two examples on the bottom. Our inversion method reveals the way in which the

models fail. The gaps are not due to low-quality rendering of those object classes, but

due to the wholesale omission of these classes. For example, large human figures and

certain classes of objects are not included.

5.4.4 Layer-wise inversion vs. other methods

We compare our layer-wise inversion method to several previous approaches; we also

benchmark it against ablations of key components of the method.

The first three columns of Figure 5-6 compare our method to prior inversion

methods. We test each method on a sample of 100 images produced by the generator

𝐺, where the ground truth z is known, and the reconstruction of an example image is

shown. In this case an ideal inversion should be able to perfectly reconstruct x′ = x. In

addition, a reconstruction of a real input image is shown at the bottom. While there is

no ground truth latent and representation for this image, the qualitative comparisons

are informative.

(a) Direct optimization of z. Smaller generators such as 5-layer DCGAN Rad-

ford et al. [2016] can be inverted by applying gradient descent on z to minimize

reconstruction loss [Zhu et al., 2016]. In column (a), we test this method on a 15-layer

Progressive GAN and find that neither z nor x can be constructed accurately.

(b): Direct learning of 𝐸. Another natural solution Donahue et al. [2017], Zhu et al.

[2016] is to learn a deep network 𝐸 that inverts 𝐺 directly, without the complexity

of layer-wise decomposition. Here, we learn an inversion network with the same

parameters and architecture as the network 𝐸 used in our method, but train it end-

to-end by directly minimizing expected reconstruction losses over generated images,

rather than learning it by layers. The method does benefit from the power of a deep

117

re
co

n
st

ru
ct

ed
 z

co
m

p
o
n

en
ts

re
co

n
st

ru
ct

ed

la
y

er
4

fe
a
tu

re
s

re
co

n
st

ru
ct

ed

p
ix

el
 c

h
a
n

n
el

s

original image

(goal)

baseline (a)

optimize z

baseline (b)

learn E directly

ablation (d)

layered E alone

ablation (e)

layered E then z

our method (f)

layered E then r

g
en

er
a
te

d

n/a

re
a
l
p

h
o
to

ev
a
lu

a
ti

n
g
 r

ec
o
n

st
ru

ct
io

n
s

o
f

sa
m

p
le

 o
f

g
en

er
a
te

d
 i

m
a
g
es

ev
a
lu

a
ti

o
n

re
co

n
st

ru
ct

ed

p
ix

el
 c

h
a
n

n
el

s

baseline (c)

direct E then z

Figure 5-6: Comparison of methods to invert the generator of Progressive GAN trained
to generate LSUN church images. Each method is described; (a) (b) and (c) are baselines,
and (d), (e), and (f) are variants of our method. The first four rows show behavior given
GAN-generated images as input. In the scatter plots, every point plots a reconstructed
component versus its true value, with a point for every RGB pixel channel or every dimension
of a representation. Reconstruction accuracy is shown as mean correlation over all dimensions
for z, layer4, and image pixels, based on a sample of 100 images. Our method (f) achieves
nearly perfect reconstructions of GAN-generated images. In the bottom rows, we apply each
of the methods on a natural image.

118

network to learn generalized rules Gershman and Goodman [2014], and the results are

marginally better than the direct optimization of z. However, both qualitative and

quantitative results remain poor.

(c): Optimization of z after initializing with 𝐸(x). This is the full method

used in Zhu et al. [2016]. By initializing method (a) using an initial guess from method

(b), results can be improved slightly. For smaller generators, this method performs

better than method (a) and (b). However, when applied to a Progressive GAN, the

reconstructions are far from satisfactory.

Ablation experiments. The last three columns of Figure 5-6 compare our full

method (f) to two ablations of our method.

(d): Layer-wise network inversion only. We can simply use the layer-wise-

trained inversion network 𝐸 as the full inverse, and simply use the initial guess

z0 = 𝐸(x), setting x′ = 𝐺(z0). This fast method requires only a single forward pass

through the inverter network 𝐸. The results are better than the baseline methods but

far short of our full method.

Nevertheless, despite the inaccuracy of the latent code z0, the intermediate layer

features are highly correlated with their true values; this method achieves 95.5%

correlation versus the true r4. Furthermore, the qualitative results show that when

reconstructing real images, this method obtains more realistic results despite being

noticeably different from the target image.

(e): Inverting 𝐺 without relaxation to 𝐺𝑓 . We can improve the initial guess

z0 = 𝐸(x) by directly optimizing z to minimize the same image reconstruction

loss. This marginally improves upon z0. However, the reconstructed images and the

input images still differ signficantly, and the recovery of z remains poor. Although

the qualitative results are good, the remaining error means that we cannot know if

any reconstruction errors are due to failures of 𝐺 to generate an image, or if those

reconstruction errors are merely due to the inaccuracy of the inversion method.

119

photograph generated photograph generated photograph generated photograph generated

tr
ai

ni
ng

 s
et

ho
ld

ou
t

se
t

in
do

or
ou

td
oo

r

LS
U

N
 b

ed
ro

om
s

da
ta

U
nr

el
at

ed
 im

ag
es

Figure 5-7: Inverting layers of a Progressive GAN bedroom generator. From top to bottom:
uncurated reconstructions of photographs from the LSUN training set, the holdout set, and
unrelated (non-bedroom) photographs, both indoor and outdoor.

(f): Our full method. By relaxing the problem and regularizing optimization of r

rather than z, our method achieves nearly perfect reconstructions of both intermediate

representations and pixels. Denote the full method as r* = 𝐸𝑓 (x).

The high precision of 𝐸𝑓 within the range of 𝐺 means that, when we observe large

differences between x and 𝐺𝑓(𝐸𝑓(x)), they are unlikely to be a failure of 𝐸𝑓 . This

indicates that 𝐺𝑓 cannot render x, which means that 𝐺 cannot either. Thus our ability

to solve the relaxed inversion problem with an accuracy above 99% gives us a reliable

tool to visualize samples that reveal what 𝐺 cannot do.

Note that the purpose of 𝐸𝑓 is to show dropped modes, not positive capabilities.

The range of 𝐺𝑓 upper-bounds the range of 𝐺, so the reconstruction 𝐺𝑓 (𝐸𝑓 (x)) could

be better than what the full network 𝐺 is capable of. For a more complete picture,

methods (d) and (e) can be additionally used as lower-bounds: those methods do not

prove images are outside 𝐺’s range, but they can reveal positive capabilities of 𝐺

because they construct generated samples in range(𝐺).

120

photograph generated photograph generated photograph generated photograph generated

tr
ai

ni
ng

 s
et

ho
ld

ou
t

se
t

in
do

or
ou

td
oo

r

LS
U

N
 o

ut
do

or
 c

hu
rc

h
da

ta
U

nr
el

at
ed

 im
ag

es

Figure 5-8: Inverting layers of a Progressive GAN outdoor church generator. From top to
bottom: uncurated reconstructions of photographs from the LSUN training set, the holdout
set, and unrelated (non-church) photographs, both indoor and outdoor.

5.4.5 Layer-wise inversion across domains

Next, we apply the inversion tool to test the ability of generators to synthesize images

outside their training sets. Figure 5-7 shows qualitative results of applying method (f)

to invert and reconstruct natural photographs of different scenes using a Progressive

GAN trained to generate LSUN bedrooms. Reconstructions from the LSUN training

and LSUN holdout sets are shown; these are compared to newly collected unrelated

(non-bedroom) images taken both indoors and outdoors. Objects that disappear from

the reconstructions reveal visual concepts that cannot be represented by the model.

Some indoor non-bedroom images are rendered in a bedroom style: for example, a

dining room table with a white tablecloth is rendered to resemble a bed with a white

bed sheet. As expected, outdoor images are not reconstructed well.

Figure 5-8 shows similar qualitative results using a Progressive GAN for LSUN

outdoor church images. Interestingly, some architectural styles are dropped even in

cases where large-scale geometry is preserved. The same set of unrelated (non-church)

images as shown in Figure 5-7 are shown. When using the church model, the indoor

reconstructions exhibit lower quality and are rendered to resemble outdoor scenes; the

reconstructions of outdoor images recover more details.

121

5.5 Discussion

We have proposed a way to measure and visualize mode-dropping in state-of-the-

art generative models. Generated Image Segmentation Statistics can compare the

quality of different models and architectures, and provide insights into the semantic

differences of their output spaces. Layer inversions allow us to further probe the range

of the generators using natural photographs, revealing specific objects and styles that

cannot be represented. By comparing labeled distributions with one another, and by

comparing natural photos with imperfect reconstructions, we can identify specific

objects, parts, and styles that a generator cannot produce.

The methods we propose here constitute a first step towards analyzing and under-

standing the latent space of a GAN and point to further questions. Why does a GAN

decide to ignore classes that are more frequent than others in the target distribution

(e.g. “person” vs. “fountain” in Figure 5-1)? How can we encourage a GAN to learn

about a concept without skewing the training set? What is the impact of architectural

choices? Finding ways to exploit and address the mode-dropping phenomena identified

by our methods are questions for future work.

Bibliography

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-

Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PloS one, 10(7), 2015.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network

dissection: Quantifying interpretability of deep visual representations. In CVPR,

2017.

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu,

and Antonio Torralba. Semantic photo manipulation with a generative image prior.

SIGGRAPH, 2019a.

122

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei, Joshua B. Tenenbaum,

William T. Freeman, and Antonio Torralba. Gan dissection: Visualizing and under-

standing generative adversarial networks. In ICLR, 2019b.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise

training of deep networks. In NeurIPS, 2007.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip

Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial

networks. In CVPR, 2017.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo

editing with introspective adversarial networks. In ICLR, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high

fidelity natural image synthesis. In ICLR, 2019.

Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative

adversarial network. IEEE transactions on neural networks and learning systems,

2018.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning.

In ICLR, 2017.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolu-

tional networks. In CVPR, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier

Mastropietro, and Aaron Courville. Adversarially learned inference. In ICLR, 2017.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning.

In Proceedings of the annual meeting of the cognitive science society, 2014.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint

arXiv:1701.00160, 2016.

123

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In NeurIPS, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In NeurIPS, 2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised

image-to-image translation. In ECCV, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In CVPR, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In CVPR, 2019.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T

Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency

methods. arXiv preprint arXiv:1711.00867, 2017.

Ke Li and Jitendra Malik. On the implicit assumptions of gans. arXiv preprint

arXiv:1811.12402, 2018.

Zachary C Lipton and Subarna Tripathi. Precise recovery of latent vectors from

generative adversarial networks. arXiv preprint arXiv:1702.04782, 2017.

124

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

In NeurIPS, 2017.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In CVPR, 2015.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization.

Distill, 2(11):e7, 2017.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather-

ine Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill,

3(3):e10, 2018.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image

synthesis with spatially-adaptive normalization. In CVPR, 2019.

Irad Peleg and Lior Wolf. Structured gans. pages 719–728. IEEE, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. In ICLR, 2016.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and

Honglak Lee. Generative adversarial text to image synthesis. In ICML, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training GANs. In NeurIPS, 2016.

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Scribbler:

Controlling deep image synthesis with sketch and color. In CVPR, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In ICLR, 2015.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.

Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825,

2017.

125

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.

Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,

2014.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image

generation. In ICLR, 2017.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of

generative models. In ICLR, 2016.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz,

and Bryan Catanzaro. Video-to-video synthesis. In NeurIPS, 2018.

Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive

generation via adversary for object detection. In CVPR, 2017.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative

analysis of decoder-based generative models. In ICLR, 2017a.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative

analysis of decoder-based generative models. In ICLR, 2017b.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual

parsing for scene understanding. In ECCV, 2018.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang,

and Xiaodong He. Attngan: Fine-grained text to image generation with attentional

generative adversarial networks. In CVPR, 2018.

Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-

Johnson, and Minh N Do. Semantic image inpainting with deep generative models.

In CVPR, 2017.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong

Xiao. Lsun: Construction of a large-scale image dataset using deep learning with

humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

126

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,

and Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with

stacked generative adversarial networks. In ICCV, 2017.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

Learning deep features for scene recognition using places database. In NeurIPS,

2014.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative

visual manipulation on the natural image manifold. In ECCV, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In ICCV, 2017.

127

128

Chapter 6

Rewriting a Deep Generative Model
David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu,
Antonio Torralba. ECCV 2020.

6.1 Introduction

We present the task of model rewriting, which aims to add, remove, and alter the

semantic and physical rules of a pretrained deep network. While modern image editing

tools achieve a user-specified goal by manipulating individual input images, we enable

a user to synthesize an unbounded number of new images by editing a generative

model to carry out modified rules.

For example in Figure 6-1, we apply a succession of rule changes to edit a Style-

GANv2 model Karras et al. [2020] pretrained on LSUN church scenes Yu et al. [2015].

The first change removes watermark text patterns (a); the second adds crowds of

people in front of buildings (b); the third replaces the rule for drawing tower tops

with a rule that draws treetops (c), creating a fantastical effect of trees growing from

towers. Because each of these modifications changes the generative model, every single

change affects a whole category of images, removing all watermarks synthesized by the

model, arranging people in front of many kinds of buildings, and creating tree-towers

everywhere. The images shown are samples from an endless distribution.

But why is rewriting a deep generative model useful? A generative model enforces

129

W0+Δ1+Δ2+Δ3W0+Δ1+Δ2W0 +Δ1W0

Add

People

Replace

Tower

(b) (c)

Generated by
original model Samples from the infinite sets generated by the rewritten models

Remove

Text

(a)

Figure 6-1: Rewriting the weights of a generator to change generative rules. Rules can be
changed to (a) remove patterns such as watermarks; (b) add objects such as people; or (c)
replace definitions such as making trees grow out of towers. Instead of editing individual
images, our method edits the generator, so an infinite set of images can be potentially
synthesized and manipulated using the altered rules.

130

many rules and relationships within the generated images Bau et al. [2019b], Jahanian

et al. [2020]. From a purely scientific perspective, the ability to edit such a model

provides insights about what the model has captured and how the model can generalize

to unseen scenarios. At a practical level, deep generative models are increasingly useful

for image and video synthesis Mathieu et al. [2016], Zhu et al. [2017], Isola et al. [2017],

Chan et al. [2019]. In the future, entire image collections, videos, or virtual worlds

could potentially be produced by deep networks, and editing individual images or

frames will be needlessly tedious. Instead, we would like to provide authoring tools for

modifying the models themselves. With this capacity, a set of similar edits could be

transferred to many images at once.

A key question is how to edit a deep generative model. The computer vision

community has become accustomed to training models using large data sets and

expensive human annotations, but we wish to enable novice users to easily modify and

customize a deep generative model without the training time, domain expertise, and

computational cost of large-scale machine learning. In this paper, we present a new

method that can locate and change a specific semantic relationship within a model. In

particular, we show how to generalize the idea of a linear associative memory Kohonen

and Ruohonen [1973] to a nonlinear convolutional layer of a deep generator. Each

layer stores latent rules as a set of key-value relationships over hidden features. Our

constrained optimization aims to add or edit one specific rule within the associative

memory while preserving the existing semantic relationships in the model as much as

possible. We achieve it by directly measuring and manipulating the model’s internal

structure, without requiring any new training data.

We use our method to create several visual editing effects, including the addition

of new arrangements of objects in a scene, systematic removal of undesired output

patterns, and global changes in the modeling of physical light. Our method is simple

and fast, and it does not require a large set of annotations: a user can alter a

learned rule by providing a single example of the new rule or a small handful of

examples. We demonstrate a user interface for novice users to modify specific rules

encoded in the layers of a GAN interactively. Finally, our quantitative experiments

131

on several datasets demonstrate that our method outperforms several fine-tuning

baselines as well as image-based edit transfer methods, regarding both photorealism

and desirable effects. Our code, data, and user interface are available at our website,

https://rewriting.csail.mit.edu.

6.2 Related work

Deep image manipulation. Image manipulation is a classic problem in computer

vision, image processing, and computer graphics. Common operations include color

transfer Reinhard et al. [2001], Levin et al. [2004], image deformation Schaefer et al.

[2006], Wolberg [1990], object cloning Pérez et al. [2003], Burt and Adelson [1983], and

patch-based image synthesis Efros and Freeman [2001], Barnes et al. [2009], Hertzmann

et al. [2001]. Recently, thanks to rapid advances of deep generative models Goodfellow

et al. [2014], Kingma and Welling [2014], Hinton et al. [2006], learning-based image

synthesis and editing methods have become widely-used tools in the community,

enabling applications such as manipulating the semantics of an input scene Park

et al. [2019], Bau et al. [2019a], Suzuki et al. [2018], Collins et al. [2020], image

colorization Zhang et al. [2016], Iizuka et al. [2016], Larsson et al. [2016], Zhang et al.

[2017], photo stylization Gatys et al. [2016], Johnson et al. [2016], Luan et al. [2017],

Liao et al. [2017], image-to-image translation Isola et al. [2017], Zhu et al. [2017],

Bousmalis et al. [2017], Taigman et al. [2017], Liu et al. [2017], Huang et al. [2018],

and face editing and synthesis Fried et al. [2019], Nagano et al. [2018], Portenier et al.

[2018]. While our user interface is inspired by previous interactive systems, our goal is

not to manipulate and synthesize a single image using deep models. Instead, our work

aims to manipulate the structural rules of the model itself, creating an altered deep

network that can produce countless new images following the modified rules.

Edit transfer and propagation. Edit transfer methods propagate pixel edits to

corresponding locations in other images of the same object or adjacent frames in the

same video An and Pellacini [2008], Xu et al. [2009], Hasinoff et al. [2010], Chen et al.

[2012, 2014], Yücer et al. [2012], Endo et al. [2016]. These methods achieve impressive

132

https://rewriting.csail.mit.edu

results but are limited in two ways. First, they can only transfer edits to images

of the same instance, as image alignment between different instances is challenging.

Second, the edits are often restricted to color transfer or object cloning. In contrast,

our method can change context-sensitive rules that go beyond pixel correspondences

(Section 6.5.3). In Section 6.5.1, we compare to an edit propagation method based on

state-of-the-art alignment algorithm, Neural Best-Buddies Aberman et al. [2018].

Interactive machine learning systems aim to improve training through human

interaction in labeling Cohn et al. [1994], Fails and Olsen Jr [2003], Settles and Craven

[2008], or by allowing a user to to aid in the model optimization process via interactive

feature selection Dy and Brodley [2000], Guo [2003], Raghavan et al. [2006], Krause

et al. [2014] or model and hyperparameter selection Kapoor et al. [2010], Patel et al.

[2011], Jiang and Canny [2017]. Our work differs from these previous approaches

because rather than asking for human help to attain a fixed objective, we enable a

user to solve novel creative modeling tasks, given a pre-trained model. Model rewriting

allows a user to create a network with new rules that go beyond the patterns present

in the training data.

Transfer learning and model fine-tuning. Transfer learning adapts a learned

model to unseen learning tasks, domains, and settings. Examples include domain

adaptation Saenko et al. [2010], zero-shot or few-shot learning Socher et al. [2013],

Lake et al. [2015], model pre-training and feature learning Donahue et al. [2014],

Zeiler and Fergus [2014], Yosinski et al. [2014], and meta-learning Bengio et al. [1992],

Andrychowicz et al. [2016], Finn et al. [2017]. Our work differs because instead of

extending the training process with more data or annotations, we enable the user to

directly change the behavior of the existing model through a visual interface. Recently,

several methods Ulyanov et al. [2018], Shocher et al. [2018], Bau et al. [2019a] propose

to train or fine-tune an image generation model to a particular image for editing and

enhancement applications. Our goal is different, as we aim to identify and change

rules that can generalize to many different images instead of one.

133

6.3 Method

To rewrite the rules of a trained generative model, we allow users to specify a handful of

model outputs that they wish to behave differently. Based on this objective, we optimize

an update in model weights that generalizes the requested change. In Section 6.3, we

derive and discuss this optimization. In Section 6.4, we present the user interface that

allows the user to interactively define the objective and edit the model.

Section 6.3.1 formulates our objective on how to add or modify a specific rule

while preserving existing rules. We then consider this objective for linear systems

and connect it to a classic technique—associative memory Kohonen [1972], Anderson

[1972], Kohonen [2012] (Section 6.3.2); this perspective allows us to derive a simple

update rule (Section 6.3.3). Finally, we apply the solution to the nonlinear case and

derive our full algorithm (Section 6.3.4).

6.3.1 Objective: Changing a rule with minimal collateral dam-

age

Given a pre-trained generator 𝐺(𝑧; 𝜃0) with weights 𝜃0, we can synthesize multiple

images 𝑥𝑖 = 𝐺(𝑧𝑖; 𝜃0), where each image is produced by a latent code 𝑧𝑖. Suppose

we have manually created desired changes 𝑥*𝑖 for those cases. We would like to find

updated weights 𝜃1 that change a computational rule to match our target examples

𝑥*𝑖 ≈ 𝐺(𝑧𝑖; 𝜃1), while minimizing interference with other behavior:

𝜃1 = arg min
𝜃

ℒsmooth(𝜃) + 𝜆ℒconstraint(𝜃), (6.1)

ℒsmooth(𝜃) , E𝑧 [ℓ(𝐺(𝑧; 𝜃0), 𝐺(𝑧; 𝜃))] , (6.2)

ℒconstraint(𝜃) ,
∑︁
𝑖

ℓ(𝑥*𝑖, 𝐺(𝑧𝑖; 𝜃)). (6.3)

A traditional solution to the above problem is to jointly optimize the weighted sum

of ℒsmooth and ℒconstraint over 𝜃, where ℓ(·) is a distance metric that measures the

perceptual distance between images Johnson et al. [2016], Dosovitskiy and Brox

[2016], Zhang et al. [2018]. Unfortunately, this standard approach does not produce a

134

generalized rule within 𝐺, because the large number of parameters 𝜃 allow the generator

to quickly overfit the appearance of the new examples without good generalization;

we evaluate this approach in Section 6.5.

However, the idea becomes effective with two modifications: (1) instead of modifying

all of 𝜃, we reduce the degrees of freedom by modifying weights 𝑊 at only one layer,

and (2) for the objective function, we directly minimize distance in the output feature

space of that same layer.

Given a layer 𝐿, we use 𝑘 to denote the features computed by the first 𝐿 − 1

fixed layers of 𝐺, and then write 𝑣 = 𝑓(𝑘;𝑊0) to denote the computation of layer 𝐿

itself, with pretrained weights 𝑊0. For each exemplar latent 𝑧𝑖, these layers produce

features 𝑘*𝑖 and 𝑖 = 𝑓(𝑘*𝑖;𝑊0). Now suppose, for each target example 𝑥*𝑖, the user

has manually created a feature change 𝑣*𝑖. (A user interface to create target feature

goals is discussed in Section 6.4.) Our objective becomes:

𝑊1 = arg min
𝑊

ℒsmooth(𝑊) + 𝜆ℒconstraint(𝑊), (6.4)

ℒsmooth(𝑊) , E𝑘

[︀
||𝑓(𝑘;𝑊0) − 𝑓(𝑘;𝑊)||2

]︀
, (6.5)

ℒconstraint(𝑊) ,
∑︁
𝑖

||𝑣*𝑖 − 𝑓(𝑘*𝑖;𝑊)||2, (6.6)

where || · ||2 denotes the L2 loss. Even within one layer, the weights 𝑊 contain many

parameters. But the degrees of freedom can be further reduced to constrain the change

to a specific direction that we will derive; this additional directional constraint will

allow us to create a generalized change from a single (𝑘*, 𝑣*) example. To understand

the constraint, it is helpful to interpret a single convolutional layer as an associative

memory, a classic idea that we briefly review next.

135

6.3.2 Viewing a convolutional layer as an associative memory

Any matrix 𝑊 can be used as an associative memory Kohonen [2012] that stores a set

of key-value pairs {(𝑘𝑖, 𝑖)} that can be retrieved by matrix multiplication:

𝑖 ≈ 𝑊𝑘𝑖. (6.7)

The use of a matrix as a linear associative memory is a foundational idea in neural

networks Kohonen [1972], Anderson [1972], Kohonen [2012]. For example, if the keys

{𝑘𝑖} form a set of mutually orthogonal unit-norm vectors, then an error-free memory

can be created as

𝑊orth ,
∑︁
𝑖

𝑖𝑘𝑖
𝑇 . (6.8)

Since 𝑘𝑖
𝑇𝑘𝑗 = 0 whenever 𝑖 ̸= 𝑗, all the irrelevant terms cancel when multiplying by 𝑘𝑗 ,

and we have 𝑊orth 𝑘𝑗 = 𝑣𝑗. A new value can be stored by adding 𝑣*𝑘*
𝑇 to the matrix

as long as 𝑘* is chosen to be orthogonal to all the previous keys. This process can be

used to store up to 𝑁 associations in an 𝑀 ×𝑁 matrix.

Figure 6-2 views the weights of one convolutional layer in a generator as an

associative memory. Instead of thinking of the layer as a collection of convolutional

filtering operations, we can think of the layer as a memory that associates keys to

values. Here each key 𝑘 is a single-location feature vector. The key is useful because,

in our trained generator, the same key will match many semantically similar locations

across different images, as shown in Figure 6-2c. Associated with each key, the map

stores an output value 𝑣 that will render an arrangement of output shapes. This output

can be visualized directly by rendering the features in isolation from neighboring

locations, as shown in Figure 6-2d.

For example, consider a layer that transforms a 512-channel featuremap into a 256-

channel featuremap using a 3×3 convolutional kernel; the weights form a 256×512×3×3

tensor. For each key 𝑘 ∈ R512, our layer will recall a value 𝑣 ∈ R256×3×3 = R2304

representing a 3 × 3 output pattern of 256-channel features, flattened to a vector, as

136

W

k ∈ R512

Input dim
512

O
ut

pu
t

di
m

 2
56

⨉
3⨉

3
v ∈ R256×3×3Weights

W ∈ R(256×3×3) × 512

(c)
Key k matches similar locations

(d)
Value v produces output shapes

As rendered
in isolation

(a)

WL1 WL2ϕ ϕ... ...

Input z

Nonlinearity

Conv

One location
feature

Featuremap

ϕ

Output x

input has a k for
each location output is v

summed
over locations

W

Layer 1 Layer 2 Layer L

(b)
W is a linear kàv
associative map

reshapemultiply

Figure 6-2: (a) A generator consists of a sequence of layers; we focus on one particular layer
𝐿. (b) The convolutional weights 𝑊 serve an associative memory, mapping keys 𝑘 to values
𝑣. The keys are single-location input features, and the values are patterns of output features.
(c) A key will tend to match semantically similar contexts in different images. Shown are
locations of generated images that have features that match a specific 𝑘 closely. (d) A value
renders shapes in a small region. Here the effect of a value 𝑣 is visualized by rendering
features at one location alone, with features at other locations set to zero. Image examples
are taken from a StyleGANv2 model trained on LSUN outdoor church scenes.

𝑣 = 𝑊𝑘. Our interpretation of the layer as an associative memory does not change

the computation: the tensor is simply reshaped and treated as a dense rectangular

matrix 𝑊 ∈ R(256×3×3)×512, whose job is to map keys 𝑘 ∈ R512 to values 𝑣 ∈ R2304, via

Eqn. 6.7.

Arbitrary Nonorthogonal Keys. In classic work, Kohonen Kohonen and Ruo-

honen [1973] observed that an associative memory can support more than 𝑁 nonorthog-

onal keys {𝑘𝑖} if instead of requiring exact equality 𝑖 = 𝑊𝑘𝑖, we choose 𝑊0 to minimize

error:

𝑊0 , arg min
𝑊

∑︁
𝑖

||𝑖−𝑊𝑘𝑖||2. (6.9)

To simplify notation, let us assume a finite set of pairs {(𝑘𝑖, 𝑖)} and collect keys and

137

values into matrices 𝐾 and 𝑉 whose 𝑖-th column is the 𝑖-th key or value:

𝐾 , [𝑘1|𝑘2| · · · |𝑘𝑖| · · ·] , (6.10)

𝑉 , [𝑣1|𝑣2| · · · |𝑣𝑖| · · ·] . (6.11)

The minimization (Eqn. 6.9) is the standard linear least-squares problem. A unique

minimal solution can be found by solving for 𝑊0 using the normal equation 𝑊0𝐾𝐾𝑇 =

𝑉 𝐾𝑇 , or equivalently by using the pseudoinverse 𝑊0 = 𝑉 𝐾+.

6.3.3 Updating 𝑊 to insert a new value

Now, departing from Kohonen Kohonen and Ruohonen [1973], we ask how to modify

𝑊0. Suppose we wish to overwrite a single key to assign a new value 𝑘* → 𝑣* provided

by the user. After this modification, our new matrix 𝑊1 should satisfy two conditions:

𝑊1 = arg min
𝑊

||𝑉 −𝑊𝐾||2, (6.12)

subject to 𝑣* = 𝑊1𝑘*. (6.13)

That is, it should store the new value; and it should continue to minimize error in

all the previously stored values. This forms a constrained linear least-squares (CLS)

problem which can be solved exactly as 𝑊1𝐾𝐾𝑇 = 𝑉 𝐾𝑇 + Λ 𝑘*
𝑇 , where the vector

Λ ∈ R𝑚 is determined by solving the linear system with the constraint in Eqn. 6.13

(see Appendix B.1). Because 𝑊0 satisfies the normal equations, we can expand 𝑉 𝐾𝑇

in the CLS solution and simplify:

𝑊1𝐾𝐾𝑇 = 𝑊0𝐾𝐾𝑇 + Λ 𝑘*
𝑇 (6.14)

𝑊1 = 𝑊0 + Λ(𝐶−1𝑘*)
𝑇 (6.15)

Above, we have written 𝐶 , 𝐾𝐾𝑇 as the second moment statistics. (𝐶 is symmetric;

if 𝐾 has zero mean, 𝐶 is the covariance.) The statistics 𝐶 can be estimated beforehand

by averaging 𝑘𝑘𝑇 on a sample of generated features; these can be gathered ahead of

138

time. Now Eqn. 6.15 has a simple form. Since Λ ∈ R𝑚 and (𝐶−1𝑘*)
𝑇 ∈ R𝑛 are simple

vectors, the update Λ(𝐶−1𝑘*)
𝑇 is a rank-one matrix with rows all multiples of the

vector (𝐶−1𝑘*)
𝑇 .

Eqn. 6.15 is interesting for two reasons. First, it shows that enforcing the user’s

requested mapping 𝑘* → 𝑣* transforms the soft error minimization objective (6.12)

into the hard constraint that the weights be updated in a particular straight-line

direction 𝐶−1𝑘*. Second, it reveals that the update direction is determined only by

the overall key statistics and the specific targeted key 𝑘*. The covariance 𝐶 is a model

constant that can be pre-computed and cached, and the update direction is determined

by the key regardless of any stored value. Only Λ, which specifies the magnitude of

each row change, depends on the target value 𝑣*.

6.3.4 Generalize to a nonlinear neural layer

In practice, even a single network block contains several non-linear components such

as a biases, ReLU, normalization, and style modulation. Below, we generalize our

procedure to the nonlinear case where the solution to 𝑊1 cannot be calculated in a

closed form. We first define our update direction:

𝑑 , 𝐶−1𝑘*. (6.16)

Then suppose we have a non-linear neural layer 𝑓(𝑘;𝑊) which follows the linear

operation 𝑊 with additional nonlinear steps. Since the form of Eqn. 6.15 is sensitive to

the rowspace of 𝑊 and insensitive to the column space, we can use the same rank-one

update form to constrain the optimization of 𝑓(𝑘*;𝑊) ≈ 𝑣*.

Therefore, in our experiments, when we update a layer to insert a new key 𝑘* → 𝑣*,

we begin with the existing 𝑊0, and we perform an optimization over the rank-one

subspace defined by the row vector 𝑑𝑇 from Eqn. 6.16. That is, in the nonlinear case,

139

we update 𝑊1 by solving the following optimization:

Λ1 = arg min
Λ∈R𝑀

||𝑣* − 𝑓(𝑘*;𝑊0 + Λ 𝑑𝑇)||. (6.17)

Once Λ1 is computed, we update the weight as 𝑊1 = 𝑊0 + Λ1𝑑
𝑇 .

Our desired insertion may correspond to a change of more than one key at once,

particularly if our desired target output forms a feature map patch 𝑉* larger than

a single convolutional kernel, i.e., if we wish to have 𝑉* = 𝑓(𝐾*;𝑊1) where 𝐾* and

𝑉* cover many pixels. To alter 𝑆 keys at once, we can define the allowable deltas as

lying within the low-rank space spanned by the 𝑁 × 𝑆 matrix 𝐷𝑆 containing multiple

update directions 𝑑𝑖 = 𝐶−1𝐾*𝑖, indicating which entries of the associative map we

wish to change.

Λ𝑆 = arg min
Λ∈R𝑀×𝑆

||𝑉* − 𝑓(𝐾*;𝑊0 + Λ𝐷𝑆
𝑇)||, (6.18)

where 𝐷𝑆 , [𝑑1|𝑑2| · · · |𝑑𝑖| · · · |𝑑𝑆] . (6.19)

We can then update the layer weights using 𝑊𝑆 = 𝑊0 + Λ𝑆𝐷𝑆
𝑇 . The change can be

made more specific by reducing the rank of 𝐷𝑆; details are discussed Appendix B.3.

To directly connect this solution to our original objective (Eqn. 6.6), we note that

the constrained optimization can be solved using projected gradient descent. That

is, we relax Eqn. 6.18 and use optimization to minimize arg min𝑊 ||𝑉* − 𝑓(𝐾*;𝑊)||;

then, to impose the constraint, after each optimization step, project 𝑊 into into the

subspace 𝑊0 + Λ𝑆𝐷𝑆
𝑇 .

6.4 User interface

To make model rewriting intuitive for a novice user, we build a user interface that

provides a three-step rewriting process: Copy, Paste, and Context.

Copy and Paste allow the user to copy an object from one generated image to

another. The user browses through a collection of generated images and highlights an

140

(a) Copy (c) Context(b) Paste

(d) Output of new unseen images (e)

Synthesized by rewritten model

User
Input

Model
Output

From original
unchanged model

Figure 6-3: The Copy-Paste-Context interface for rewriting a model. (a) Copy: the user
uses a brush to select a region containing an interesting object or shape, defining the target
value 𝑉*. (b) Paste: The user positions and pastes the copied object into a single target
image. This specifies the 𝐾* → 𝑉* pair constraint. (c) Context: To control generalization,
the user selects target regions in several images. This establishes the updated direction 𝑑 for
the associative memory. (d) The edit is applied to the model, not a specific image, so newly
generated images will always have hats on top of horse heads. (e) The change has generalized
to a variety of different types of horses and poses (see more in Appendix B).

area of interest to copy; then selects a generated target image and location for pasting

the object. For example, in Figure 6-3a, the user selects a helmet worn by a rider and

then pastes it in Figure 6-3b on a horse’s head.

Our method downsamples the user’s copied region to the resolution of layer 𝐿 and

gathers the copied features as the target value 𝑉*. Because we wish to change not just

one image, but the model rules themselves, we treat the pasted image as a new rule

𝐾* → 𝑉* associating the layer 𝐿− 1 features 𝐾* of the target image with the newly

copied layer 𝐿 values 𝑉* that will govern the new appearance.

Context Selection allows a user to specify how this change will be generalized, by

pointing out a handful of similar regions that should be changed. For example, in

Figure 6-3b, the user has selected heads of different horses.

We collect the layer 𝐿− 1 features at the location of the context selections as a set

141

Original Model

(a) Domes à Spires

NBB
Laplace
Blending

(b) Domes à Trees (c) Faces à Smiles

NBB
No Blending

Ours

Figure 6-4: Adding and replacing objects in three different settings. (a) Replacing domes with
an angular peaked spire causes peaked spires to be used throughout the model. (b) Replacing
domes with trees can generate images unlike any seen in a training set. (c) Replacing closed
lips with an open-mouth smile produces realistic open-mouth smiles. For each case, we show
the images generated by an unchanged model, then the edit propagation results, with and
without blending. Our method is shown in the last row.

of relevant 𝐾 that are used to determine the weight update direction 𝑑 via Eqn. 6.16.

Generalization improves when we allow the user to select several context regions to

specify the update direction (see Table 6.1); in Figure 6-3, the four examples are used

to create a single 𝑑. Appendix B.3 discusses this rank reduction.

Applying one rule change on a StyleGANv2 model requires about eight seconds on

a single Titan GTX GPU. Please check out the demo video of our interface.

6.5 Results

We test model rewriting with three editing effects. First, we add new objects into the

model, comparing results to several baseline methods. Then, we use our technique

to erase objects using a low-rank change; we test this method on the challenging

watermark removal task. Finally, we invert a rule for a physical relationship between

bright windows and reflections in a model.

142

http://rewriting.csail.mit.edu/video

% smiling images ↑ LPIPS (masked) ↓
% more realistic

than ours ↑
Our method (projected gradient descent) 84.37 0.04 –
With direct optimization of Λ 87.44 0.14 43.0
With single-image direction constraint 82.12 0.05 47.3
With single-layer, no direction constraint 90.94 0.30 6.8
Finetuning all weights 85.78 0.40 8.7
NBB + Direct copying 94.81 0.32 9.8
NBB + Laplace blending 93.51 0.32 8.6
Unmodified model 78.37 – 50.9

Table 6.1: Editing a StyleGANv2 Karras et al. [2020] FFHQ Karras et al. [2019] model to
produce smiling faces in 𝑛 = 10, 000 images. To quantify the efficacy of the change, we show
the percentage of smiling faces among the modified images, and we report the LPIPS distance
on masked images to quantify undesired changes. For realism, workers make 𝑛 = 1, 000
pairwise judgements comparing images from other methods to ours.

Dome → Spire Dome → Tree
% dome pixels

correctly modified ↑
LPIPS

(masked) ↓
% more realistic

than ours ↑
% dome pixels

correctly modified ↑
LPIPS

(masked) ↓
Our method (projected gradient descent) 92.03 0.02 – 48.65 0.03
With direct optimization of Λ 80.03 0.10 53.7 59.43 0.13
With single-image direction constraint 90.14 0.04 48.8 39.72 0.03
With single-layer, no direction constraint 80.69 0.29 38.1 41.32 0.45
Finetuning all weights 41.16 0.36 27.1 10.16 0.31
NBB + Direct copying 69.99 0.08 8.9 46.44 0.09
NBB + Laplace blending 69.63 0.08 12.2 31.18 0.09
Unmodified model – – 63.8 – –

Table 6.2: We edit a StyleGANv2 Karras et al. [2020] LSUN church Yu et al. [2015] model
to replace domes with spires/trees in 𝑛 = 10, 000 images. To quantify efficacy, we show the
percentage of dome category pixels changed to the target category, determined by a segmenter
Xiao et al. [2018]. To quantify undesired changes, we report LPIPS distance between edited
and unchanged images, in non-dome regions. For realism, workers make 𝑛 = 1, 000 pairwise
judgements comparing images from other methods to ours.

6.5.1 Putting objects into a new context

Here we test our method on several specific model modifications. In a church generator,

the model edits change the shape of domes to spires, and change the domes to trees,

and in a face generator, we add open-mouth smiles. Examples of all the edits are

shown in Figure 6-4.

Quantitative Evaluation. In Tables 6.1 and 6.2,we compare the results to several

baselines. We compare our method to the naive approach of fine-tuning all weights

according to Eqn. 6.3, as well as the method of optimizing all the weights of a layer

without constraining the direction of the change, as in Eqn. 6.6, and to a state-of-the-

art image alignment algorithm, Neural Best-Buddies (NBB Aberman et al. [2018]),

143

Count of visible watermarks middle bottom
Zeroing 30 units (GAN Dissection) 0 6
Zeroing 60 units (GAN Dissection) 0 4
Rank-1 update (our method) 0 0
Unmodified model 64 26

Table 6.3: Visible watermark text produced by StyleGANv2 church model in 𝑛 = 1000 images,
without modification, with sets of units zeroed (using the method of GAN Dissection), and
using our method to apply a rank-one update.

which is used to propagate an edit across a set of similar images by compositing pixels

according to identified sparse correspondences. To transfer an edit from a target image,

we use NBB and Moving Least Squares Schaefer et al. [2006] to compute a dense

correspondence between the source image we would like to edit and the original target

image. We use this dense correspondence field to warp the masked target into the

source image. We test both direct copying and Laplace blending.

For each setting, we measure the efficacy of the edits on a sample of 10, 000

generated images, and we also quantify the undesired changes made by each method.

For the smiling edit, we measure efficacy by counting images classified as smiling by

an attribute classifier Sharma and Foroosh [2020], and we also quantify changes made

in the images outside the mouth region by masking lips using a face segmentation

model ZLL [2019] and using LPIPS Zhang et al. [2018] to quantify changes. For the

dome edits, we measure how many dome pixels are judged to be changed to non-domes

by a segmentation model Xiao et al. [2018], and we measure undesired changes outside

dome areas using LPIPS. We also conduct a user study where users are asked to

compare the realism of our edited output to the same image edited using baseline

methods. We find that our method produces more realistic outputs that are more

narrowly targeted than the baseline methods. For the smile edit, our method is not

as aggressive as baseline methods at introducing smiles, but for the dome edits, our

method is more effective than baseline methods at executing the change. Our metrics

are further discussed in Appendix B.2.

144

(a) Generated by
unchanged model

(d) Our method:
rank-1 update

(b) Dissection:
zeroing 30 units

(c) Dissection:
zeroing 60 units

Figure 6-5:]
Removing watermarks from StyleGANv2 Karras et al. [2020] LSUN church Yu et al.

[2015] model. (a) Many images generated by this model include transparent
watermarks in the center or text on the bottom. (b) Using GAN Dissection Bau et al.
[2019b] to zero 30 text-specific units removes middle but not bottom text cleanly. (c)
Removing 60 units does not fully remove text, and distorts other aspects of the image.
(b) Applying our method to create a rank-1 change erases both middle and bottom

text cleanly.

6.5.2 Removing undesired features

Here we test our method on the removal of undesired features. Figure 6-5a shows

several examples of images output by a pre-trained StyleGANv2 church model. This

model occasionally synthesizes images with text overlaid in the middle and the bottom

resembling stock-photo watermarks in the training set.

The GAN Dissection study Bau et al. [2019b] has shown that some objects can be

removed from a generator by zeroing the units that best match those objects. To find

these units, we annotated the middle and bottom text regions in ten generated images,

and we identified a set of 60 units that are most highly correlated with features in

145

W1

Without Windows

Without Windows

With Windows

With Windows

Reflections

Reflections

Original Generator

Generator with
rank-1 change

inverts reflection rule

Without Windows

Without Windows

With Windows

With Windows

Reflections

Reflections

W0

Our
Method

Figure 6-6: Inverting a single semantic rule within a model. At the top row, a Progressive
GAN Karras et al. [2018] trained on LSUN kitchens Yu et al. [2015] links windows to
reflections: when windows are added by manipulating intermediate features identified by
GAN Dissection Bau et al. [2019b], reflections appear on the table. In the bottom row, one
rule has been changed within the model to invert the relationship between windows and
reflections. Now adding windows decreases reflections and vice-versa.

these regions. Zeroing the most correlated 30 units removes some of the text, but

leaves much bottom text unremoved, as shown in Figure 6-5b. Zeroing all 60 units

reduces more of the bottom text but begins to alter the main content of the images,

as shown in Figure 6-5c.

For our method, we use the ten user-annotated images as a context to create a

rank-one constraint direction 𝑑 for updating the model, and as an optimization target

𝐾* → 𝑉*, we use one successfully removed watermark from the setting shown in

Figure 6-5b. Since our method applies a narrow rank-1 change constraint, it would

be expected to produce a loose approximation of the rank-30 change in the training

example. Yet we find that it has instead improved specificity and generalization of

watermark removal, removing both middle and bottom text cleanly while introducing

few changes in the main content of the image. We repeat the process for 1000 images

and tabulate the results in Table 6.3.

146

6.5.3 Changing contextual rules

In this experiment, we find and alter a rule that determines the illumination interactions

between two objects at different locations in an image.

State-of-the-art generative models learn to enforce many relationships between

distant objects. For example, it has been observed Bau et al. [2019a] that a kitchen-

scene Progressive GAN model Karras et al. [2018] enforces a relationship between

windows on walls and specular reflections on tables. When windows are added to a

wall, reflections will be added to shiny tabletops, and vice-versa, as illustrated in the

first row of Figure 6-6. Thus the model contains a rule that approximates the physical

propagation of light in a scene.

In the following experiment, we identified an update direction that allows us to

change this model of light reflections. Instead of specifying an objective that copies

an object from one context to another, we used a similar tool to specify a 𝐾* → 𝑉*

objective that swaps bright tabletop reflections with dim reflections on a set of 15 pairs

of scenes that are identical other than the presence or absence of bright windows. To

identify a rank-one change direction 𝑑, we used projected gradient descent, as described

in Section 6.3.4, using SVD to limit the change to rank one during optimization. The

results are shown in the second row of Figure 6-6. The modified model differs from the

original only in a single update direction of a single layer, but it inverts the relationship

between windows and reflections: when windows are added, reflections are reduced,

and vice-versa.

6.6 Discussion

Machine learning requires data, so how can we create effective models for data that

do not yet exist? Thanks to the rich internal structure of recent GANs, in this paper,

we have found it feasible to create such models by rewriting the rules within existing

networks. Although we may never have seen a tree sprouting from a tower, our network

contains rules for both trees and towers, and we can easily create a model that connects

those compositional rules to synthesize an endless distribution of images containing

147

the new combination.

The development of sophisticated generative models beyond the image domain,

such as the GPT-3 language model Brown et al. [2020] and WaveNet for audio

synthesis Oord et al. [2016], means that it will be increasingly attractive to rewrite

rules within other types of models as well. After training on vast datasets, large-

scale deep networks have proven to be capable of representing an extensive range of

different styles, sentiments, and topics. Model rewriting provides an avenue for using

this structure as a rich medium for creating novel kinds of content, behavior, and

interaction.

Bibliography

Kfir Aberman, Jing Liao, Mingyi Shi, Dani Lischinski, Baoquan Chen, and Daniel

Cohen-Or. Neural best-buddies: Sparse cross-domain correspondence. ACM TOG,

37(4):69, 2018.

Xiaobo An and Fabio Pellacini. Appprop: all-pairs appearance-space edit propagation.

ACM TOG, 27(3):40, 2008.

James A Anderson. A simple neural network generating an interactive memory.

Mathematical biosciences, 14(3-4):197–220, 1972.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,

Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by

gradient descent by gradient descent. In NeurIPS, 2016.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch:

A randomized correspondence algorithm for structural image editing. ACM TOG,

28(3):24, 2009.

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu,

and Antonio Torralba. Semantic photo manipulation with a generative image prior.

ACM TOG, 38(4), 2019a.

148

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei, Joshua B. Tenenbaum,

William T. Freeman, and Antonio Torralba. Gan dissection: Visualizing and under-

standing generative adversarial networks. In ICLR, 2019b.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of

a synaptic learning rule. In Optimality in Artificial and Biological Neural Networks,

pages 6–8. Univ. of Texas, 1992.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip

Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial

networks. In CVPR, 2017.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Peter Burt and Edward Adelson. The laplacian pyramid as a compact image code.

IEEE Transactions on communications, 31(4):532–540, 1983.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance

now. In ICCV, 2019.

Xiaowu Chen, Dongqing Zou, Qinping Zhao, and Ping Tan. Manifold preserving edit

propagation. ACM TOG, 31(6):1–7, 2012.

Xiaowu Chen, Dongqing Zou, Jianwei Li, Xiaochun Cao, Qinping Zhao, and Hao

Zhang. Sparse dictionary learning for edit propagation of high-resolution images.

In CVPR, 2014.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active

learning. Machine learning, 15(2):201–221, 1994.

Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. Editing in style: Uncovering

the local semantics of gans. In CVPR, 2020.

149

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,

and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual

recognition. In ICML, 2014.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity

metrics based on deep networks. In NeurIPS, 2016.

Jennifer G Dy and Carla E Brodley. Visualization and interactive feature selection for

unsupervised data. In SIGKDD, 2000.

Alexei A Efros and William T Freeman. Image quilting for texture synthesis and

transfer. In SIGGRAPH. ACM, 2001.

Yuki Endo, Satoshi Iizuka, Yoshihiro Kanamori, and Jun Mitani. Deepprop: Extracting

deep features from a single image for edit propagation. Computer Graphics Forum,

35(2):189–201, 2016.

Jerry Alan Fails and Dan R Olsen Jr. Interactive machine learning. 2003.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In ICML, pages 1126–1135. JMLR. org, 2017.

Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkelstein, Eli Shechtman, Dan B

Goldman, Kyle Genova, Zeyu Jin, Christian Theobalt, and Maneesh Agrawala. Text-

based editing of talking-head video. ACM TOG, 38(4):1–14, 2019.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using

convolutional neural networks. CVPR, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.

Diansheng Guo. Coordinating computational and visual approaches for interactive

feature selection and multivariate clustering. Information Visualization, 2(4):232–

246, 2003.

150

Samuel W Hasinoff, Martyna Jóźwiak, Frédo Durand, and William T Freeman. Search-

and-replace editing for personal photo collections. In ICCP, 2010.

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H Salesin.

Image analogies. In SIGGRAPH, 2001.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 18:1527–1554, 2006.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised

image-to-image translation. In ECCV, 2018.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be Color!: Joint End-

to-end Learning of Global and Local Image Priors for Automatic Image Colorization

with Simultaneous Classification. ACM TOG, 35(4), 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In CVPR, 2017.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the "steerability" of generative

adversarial networks. In ICLR, 2020.

Biye Jiang and John Canny. Interactive machine learning via a gpu-accelerated toolkit.

pages 535–546, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style

transfer and super-resolution. In ECCV, 2016.

Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric Horvitz. Interactive optimization

for steering machine classification. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 1343–1352, 2010.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In CVPR, 2019.

151

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo

Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR,

2014.

Teuvo Kohonen. Correlation matrix memories. IEEE transactions on computers, 100

(4):353–359, 1972.

Teuvo Kohonen. Associative memory: A system-theoretical approach, volume 17.

Springer Science & Business Media, 2012.

Teuvo Kohonen and Matti Ruohonen. Representation of associated data by matrix

operators. IEEE Transactions on Computers, 100(7):701–702, 1973.

Josua Krause, Adam Perer, and Enrico Bertini. Infuse: interactive feature selection for

predictive modeling of high dimensional data. IEEE transactions on visualization

and computer graphics, 20(12):1614–1623, 2014.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 350(6266):

1332–1338, 2015.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations

for automatic colorization. ECCV, 2016.

Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization. ACM

TOG, 23(3):689–694, 2004.

Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual attribute

transfer through deep image analogy. ACM TOG, 36(4):1–15, 2017.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation

networks. In NeurIPS, 2017.

Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style transfer.

In CVPR, 2017.

152

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction

beyond mean square error. In ICLR, 2016.

Koki Nagano, Jaewoo Seo, Jun Xing, Lingyu Wei, Zimo Li, Shunsuke Saito, Aviral

Agarwal, Jens Fursund, Hao Li, Richard Roberts, et al. pagan: real-time avatars

using dynamic textures. In SIGGRAPH Asia, page 258, 2018.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image

synthesis with spatially-adaptive normalization. In CVPR, 2019.

Kayur Patel, Steven M Drucker, James Fogarty, Ashish Kapoor, and Desney S Tan.

Using multiple models to understand data. In IJCAI, 2011.

Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In

SIGGRAPH, pages 313–318, 2003.

Tiziano Portenier, Qiyang Hu, Attila Szabó, Siavash Arjomand Bigdeli, Paolo Favaro,

and Matthias Zwicker. Faceshop: Deep sketch-based face image editing. ACM TOG,

37(4):99:1–99:13, July 2018. ISSN 0730-0301.

Hema Raghavan, Omid Madani, and Rosie Jones. Active learning with feedback on

features and instances. JMLR, 7(Aug):1655–1686, 2006.

Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. Color transfer

between images. IEEE Computer graphics and applications, 21(5):34–41, 2001.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category

models to new domains. In ECCV, pages 213–226. Springer, 2010.

Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using moving

least squares. ACM TOG, 25(3):533–540, July 2006. ISSN 0730-0301.

153

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence

labeling tasks. In EMNLP, 2008.

Ankit Sharma and Hassan Foroosh. Slim-cnn: A light-weight cnn for face attribute

prediction. In International Conference on Automatic Face and Gesture Recognition,

2020.

Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot” super-resolution using

deep internal learning. In CVPR, 2018.

Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot

learning through cross-modal transfer. In NeurIPS, 2013.

Ryohei Suzuki, Masanori Koyama, Takeru Miyato, Taizan Yonetsuji, and Huachun

Zhu. Spatially controllable image synthesis with internal representation collaging.

arXiv preprint arXiv:1811.10153, 2018.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image

generation. In ICLR, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In CVPR,

2018.

George Wolberg. Digital image warping. IEEE computer society press, 1990.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual

parsing for scene understanding. In ECCV, 2018.

Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. Efficient affinity-based

edit propagation using kd tree. ACM TOG, 28(5):1–6, 2009.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? NeurIPS, 2014.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong

Xiao. Lsun: Construction of a large-scale image dataset using deep learning with

humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

154

Kaan Yücer, Alec Jacobson, Alexander Hornung, and Olga Sorkine. Transfusive image

manipulation. ACM TOG, 31(6):1–9, 2012.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In ECCV, 2014.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In

ECCV, 2016.

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe Yu,

and Alexei A Efros. Real-time user-guided image colorization with learned deep

priors. ACM TOG, 9(4), 2017.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In ICCV, 2017.

ZLL. Face-parsing pytorch. https://github.com/zllrunning/face-parsing.PyT

orch, 2019.

155

https://github.com/zllrunning/face-parsing.PyTorch
https://github.com/zllrunning/face-parsing.PyTorch

156

Chapter 7

Epilogue

7.1 The end of algorithmics foretold

Since Turing laid the intellectual foundations of computing in the 1930s, computer

science has centered on the study of algorithmics, a discipline about mathematics

and engineering even more so than science.∗ Each algorithm we create has served

as constructive proof† that demonstrates that there is a person who understands

the problem well enough to turn every detail into lines of code. In our field, we are

accustomed to having full knowledge of the goals and full control of the solutions.

Instead of mere evidence, we prefer to seek out correctness.

And yet while Turing pioneered the mathematical principles behind our algorithmic

computing discipline, he also foretold its end: in his seminal essay contemplating

machine intelligence [Turing, 1950], he observed that “An important feature of a

learning machine is that its teacher will often be very largely ignorant of quite what

is going on inside.” Seventy years later, machine learning is ascendant and Turing’s

prophecy has come to pass. Ignorance, it seems, is upon us.

∗The question of whether the discipline of computing is a science has been repeatedly de-
bated [Knuth, 1974, Denning et al., 1989]. Here we note that computing differs from science in how
nearly every system we study has been created by a person whose goals we can take for granted.

†I refer not only to the formal Curry-Howard isomorphism [Hindley and Seldin, 1980] in which
every program is known to be equivalent to a formal proof, but also the way in which constructing
a program is proof of knowledge in the spirit of Feyman’s saying, “What I cannot create, I do not
understand” [Gleick, 1993].

157

7.2 Computing as a science

The message of this dissertation is that the end of the algorithmic era does not doom

us to ignorance. Instead, it challenges us to develop a new kind of knowledge. Yes:

machine learning puts us in the uncomfortable position of not knowing how our

programs work. But not knowing does not mean there is nothing to know.

The simple methods that we demonstrate within these pages are evidence that,

even when we work with large machine-learned neural networks, it is possible to

discern their internal structure. Moreover, we have shown that there are benefits to

understanding that structure. The insights unlock new applications.

Just as modern biologists devote their efforts to understanding the detailed molec-

ular processes that spring from evolutionary development, future computer scientists

will devote their effort to the hard work of understanding the detailed computations

that arise from machine learning.

Yet this emerging science of computing has a different character than our field

has had up to now. With a machine-learned program, we lack the familiarity that

comes from knowing that a reasonable person has created a program. So we begin our

investigations of machine-learned systems fully ignorant. We must build our knowledge

and intuition with an open mind from the ground up, developing experience through

observation, hypothesis-forming, and experimentation.

Computer scientists will need to prove our mettle as scientists.

Bibliography

Peter J. Denning, Douglas E Comer, David Gries, Michael C. Mulder, Allen Tucker,

A. Joe Turner, and Paul R Young. Computing as a discipline. Computer, 22(2):

63–70, 1989.

James Gleick. Genius: The life and science of Richard Feynman. Vintage, 1993.

J Roger Hindley and Jonathan P Seldin. To HB Curry: essays on combinatory logic,

lambda calculus, and formalism, volume 479490. Academic Press New York, 1980.

158

Donald E Knuth. Computer science and its relation to mathematics. The American

Mathematical Monthly, 81(4):323–343, 1974.

Alan M Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

159

160

Appendix A

Supplementary Material on GAN

Dissection

A.1 Automatic identification of artifact units

In Section 4.4.2, we have improved GANs by manually identifying and ablating artifact-

causing units. Now we describe an automatic procedure to identify artifact units using

unit-specific FID scores.

To compute the FID score [Heusel et al., 2017] for a unit 𝑢, we generate 200, 000

images and select the 10, 000 images that maximize the activation of unit 𝑢, and this

subset of 10, 000 images is compared to the true distribution (50, 000 real images)

using FID. Although every such unit-maximizing subset of images represents a skewed

distribution, we find that the per-unit FID scores fall in a wide range, with most units

scoring well in FID while a few units stand out with bad FID scores: many of them

were also manually flagged by humans, as they tend to activate on images with clear

visible artifacts.

Figure A-1 shows the performance of FID scores as a predictor of manually flagged

artifact units. The per-unit FID scores can achieve 50% precision and 50% recall.

That is, of the 20 worst-FID units, 10 are also among the 20 units manually judged to

have the most noticeable artifacts. Furthermore, repairing the model by ablating the

highest-FID units works: qualitative results are shown in Figure A-2 and quantitative

161

(a) unit 435, FID=13.35

(b) unit 224, FID=30.80

(c) unit 231, FID=46.29

Figure A-1: At left, visualizations of the highest-activating image patches (from a sample of
1000) for three units. (a) the lowest-FID unit that is manually flagged as showing artifacts
(b) the highest-FID unit that is not manually flagged (c) the highest-FID unit overall, which
is also manually flagged. At right, the precision-recall curve for unit FID as a predictor of the
manually flagged artifact units. A FID threshold selecting the top 20 FID units will identify
10 (of 20) of the manually flagged units.

Table A.1: We compare generated images before and after ablating “artifact” units. The
“artifacts” units are found either manually, automatically, or both. We also report a simple
baseline that ablates 20 randomly chosen units.

Fréchet Inception Distance (FID)

original images 43.16
manually chosen “artifact” units ablated (as in Section 4.4.2) 27.14
highest-20 FID units ablated 27.6
union of manual and highest FID (30 total) units ablated 26.1
20 random units ablated 43.17

results are shown in Table A.1.

A.2 Human evaluation of dissection

As a sanity check, we evaluate the gap between human labeling of object concepts

correlated with units and our automatic segmentation-based labeling, for one model,

as follows.

For each of 512 units of layer4 of a “living room” Progressive GAN, 5 to 9 human

annotations were collected (3728 labels in total). In each case, an AMT worker is

asked to provide one or two words describing the highlighted patches in a set of

top-activating images for a unit. Of the 512 units, 201 units were described by the

same consistent word (such as "sofa", "fireplace" or "wicker") in 50% or more of the

human labels. These units are interpretable to humans.

162

(a) original generated images without ablation

(b) ablating the 20 highest-FID units.

(b) ablating the 20 manually-identified untis.

Figure A-2: The effects of ablating high-FID units compared to manually-flagged units:
(a) generated images with artifacts, without intervention; (b) those images generated after
ablating the 20-highest FID units; (c) those images generated after ablating the 20 manually-
chosen artifact units.

Applying our segmentation-based dissection method, 154/201 of these units are

also labeled with a confident label with IoU > 0.05 by dissection. In 104/154 cases,

the segmentation-based model gave the same label word as the human annotators,

and most others are slight shifts in specificity. For example, the segmentation labels

“ottoman” or “curtain” or “painting” when a person labels “sofa” or “window” or

“picture,” respectively. A second AMT evaluation was done to rate the accuracy of

both segmentation-derived and human-derived labels. Human-derived labels scored

100% (of the 201 human-labeled units, all of the labels were rated as consistent by

most raters). Of the 154 segmentation-generated labels, 149 (96%) were rated by most

AMT raters as accurate as well.

The five failure cases (where the segmentation is confident but rated as inaccurate

by humans) arise from situations in which human evaluators saw one concept after

observing only 20 top-activating images, while the algorithm, in evaluating 1000

images, counted a different concept as dominant. Figure A-3a shows one example: in

the top images, mostly sofas are highlighted and few ceilings, whereas in the larger

163

(a) unit118 in layer4

(b) unit11 in layer4

Figure A-3: Two examples of generator units that our dissection method labels differently
from humans. Both units are taken from layer4 of a Progressive GAN of living room model.
In (a), human label the unit as ‘sofa’ based on viewing the top-20 activating images, and
our method labels as ‘ceiling’. In this case, our method counts many ceiling activations in a
sample of 1000 images beyond the top 20. In (b), the dissection method has no confident
label prediction even though the unit consistently triggers on white letterbox shapes at the
top and bottom of the image. The segmentation model we use has no label for such abstract
shapes.

sample, mostly ceilings are triggered.

There are also 47/201 cases where the segmenter is not confident while humans have

consensus. Some of these are due to missing concepts in the segmenter. Figure A-3b

shows a typical example, where a unit is devoted to letterboxing (white stripes at the

top and bottom of images), but the segmentation has no confident label to assign to

these. We expect that as future semantic segmentation models are developed to be

able to identify more concepts such as abstract shapes, more of these units can be

automatically identified.

A.3 Protecting segmentation model against unreal-

istic images

Our method relies on having a segmentation function 𝑠𝑐(x) that identifies pixels of

class 𝑐 in the output x. However, the segmentation model 𝑠𝑐 can perform poorly in

the cases where x does not resemble the original training set of 𝑠𝑐. This phenomenon

is visible when analyzing earlier GAN models. For example, Figure A-4 visualizes

two units from a WGAN-GP model [Gulrajani et al., 2017] for LSUN bedrooms (this

model was trained by Karras et al. [2018] as a baseline in the original paper). For these

164

(a) Unit 154, FID 63.8, "Floor" with IoU 0.20.

(b) Unit 371, FID 58.3, "Swimming Pool" with IoU 0.02.

Figure A-4: Two examples of units that correlate with unrealistic images that confuse a
semantic segmentation network. Both units are taken from a WGAN-GP for LSUN bedrooms.

 Interpretable units Unit class distribution
WGAN­GP
512 units total

86 object units
84 part units
2 material units

172 units

1

21

41

un
its

ce
ilin

g

wind
owbe

d sky

gro
un

d

ce
ilin

g-t
be

d-r
be

d-b
flo

or-
b
be

d-lsky
-t

wind
ow

-r
be

d-t

ce
ilin

g-l
sky

-r
flo

or-
r

flo
or-

l
wall-

b

wind
ow

-l

ce
ilin

g-b
flo

or-
t

ce
ilin

g-r

wind
ow

-b

bu
ildi

ng
-t

ca
rpe

t

5
ob

je
ct

s

19
 p

ar
ts

1
m

at
er

ia
l

 Interpretable units Unit class distribution
WGAN­GP (FID<55)
512 units total

62 object units
60 part units
2 material units

124 units

1

14

27

un
its

ce
ilin

g
be

d

wind
ow
gro

un
d

ce
ilin

g-t
be

d-bbe
d-rbe

d-lsky
-t

wind
ow

-r
flo

or-
b
be

d-t

ce
ilin

g-l
flo

or-
r

flo
or-

l
wall-

b

ce
ilin

g-b
flo

or-
t
sky

-r

bu
ildi

ng
-t

ca
rpe

t

4
ob

je
ct

s

16
 p

ar
ts

1
m

at
er

ia
l

Figure A-5: Comparing a dissection of units for a WGAN-GP trained on LSUN bedrooms,
considering all units (at left) and considering only “realistic” units with FID < 55 (at right).
Filtering units by FID scores removes spurious detected concepts such as ‘sky’, ‘ground’, and
‘building’.

two units, the segmentation network seems to be confused by the distorted images.

To protect against such spurious segmentation labels, we can use a technique

similar to that described in Section A.1: automatically identify units that produce

unrealistic images, and omit those “unrealistic” units from semantic segmentation.

An appropriate threshold to apply will depend on the distribution being modeled:

in Figure A-5, we show how applying a filter, ignoring segmentation on units with

FID 55 or higher, affects the analysis of this base WGAN model. In general, fewer

irrelevant labels are associated with units.

A.4 Computing causal units

In this section we provide more details about the ACE optimization described in

Section 4.3.2.

165

Specifying the per-class positive intervention constant k. In Eqn. 4.3, the

negative intervention is defined as zeroing the intervened units, and a positive inter-

vention is defined as setting the intervened units to some big class-specific constant k.

For interventions for class 𝑐, we set k to be mean featuremap activation conditioned

on the presence of class 𝑐 at that location in the output, with each pixel weighted

by the portion of the featuremap locations that are covered by the class 𝑐. Setting

all units at a pixel to k will tend to strongly cause the target class. The goal of the

optimization is to find the subset of units that is causal for 𝑐.

Sampling 𝑐-relevant locations P. When optimizing the causal objective (Eqn.

4.5), the intervention locations P are sampled from individual featuremap locations.

When the class 𝑐 is rare, most featuremap locations are uninformative: for example,

when class 𝑐 is a door in church scenes, most regions of the sky, grass, and trees are

locations where doors will not appear. Therefore, we focus the optimization as follows:

during training, minibatches are formed by sampling locations P that are relevant

to class 𝑐 by including locations where the class 𝑐 is present in the output (and are

therefore candidates for removal by ablating a subset of units), and an equal portion

of locations where class 𝑐 is not present at P, but it would be present if all the units

are set to the constant k (candidate locations for insertion with a subset of units).

During the evaluation, causal effects are evaluated using uniform samples: the region

P is set to the entire image when measuring ablations, and to uniformly sampled

pixels P when measuring single-pixel insertions.

Initializing 𝛼 with IoU. When optimizing causal 𝛼 for class 𝑐, we initialize with

𝛼𝑢 =
IoU𝑢,𝑐

max𝑣 IoU𝑣,𝑐

(A.1)

That is, we set the initial 𝛼 so that the largest component corresponds to the unit

with the largest IoU for class 𝑐, and we normalize the components so that this largest

component is 1.

166

5 10 15
layer after intervention

0.00

0.02

0.04

0.06

0.08

no
rm

al
ize

d
fe

at
ur

e
di

ff

effect
not

Figure A-6: Tracing the effect of inserting door units on downstream layers. An identical
"door" intervention at layer4 of each pixel in the featuremap has a different effect on later
feature layers, depending on the location of the intervention. In the heatmap, brighter colors
indicate a stronger effect on the layer14 feature. A request for a door has a larger effect in
locations of a building, and a smaller effect near trees and sky. At right, the magnitude of
feature effects at every layer is shown, measured by the changes of mean-normalized features.
In the line plot, feature changes for interventions that result in human-visible changes are
separated from interventions that do not result in noticeable changes in the output.

Applying a learned intervention 𝛼 When applying the interventions, we clip 𝛼

by keeping only its top 𝑛 components and zeroing the remainder. To compare the

interventions of different classes an different models on an equal basis, we examine

interventions where we set 𝑛 = 20.

A.5 Tracing the effect of an intervention

To investigate the mechanism for suppressing the visible effects of some interventions

seen in Section 4.4.4, in this section we insert 20 door-causal units on a sample of

individual featuremap locations at layer4 and measure the changes caused in later

layers.

To quantify effects on downstream features, the change in each feature channel is

normalized by that channel’s mean L1 magnitude, and we examine the mean change in

these normalized featuremaps at each layer. In Figure A-6, these effects that propagate

to layer14 are visualized as a heatmap: brighter colors indicate a stronger effect on

the final feature layer when the door intervention is in the neighborhood of a building

instead of trees or sky. Furthermore, we plot the average effect on every layer at right

in Figure A-6, separating interventions that have a visible effect from those that do

167

not. A small identical intervention at layer4 is amplified to larger changes up to a

peak at layer12.

A.6 Monitoring GAN units during training

Dissection can also be used to monitor the progress of training by quantifying the

emergence, diversity, and quality of interpretable units. For example, in Figure A-7 we

show dissections of layer4 representations of a Progressive GAN model trained on

bedrooms, captured at a sequence of checkpoints during training. As training proceeds,

the number of units matching objects increases, as does the number of object classes

with matching units, and the quality of object detectors as measured by average IoU

over units increases. During this successful training, dissection suggests that the model

is gradually learning the structure of a bedroom, as increasingly units converge to

meaningful bedroom concepts.

A.7 All layers of a GAN

In Section 4.4.1 we show a small selection of layers of a GAN; in Figure A-8 we show

a complete listing of all the internal convolutional layers of that model (a Progressive

GAN trained on LSUN living room images). As can be seen, the diversity of units

matching high-level object concepts peaks at layer4-layer6, then declines in later

layers, with the later layers dominated by textures, colors, and shapes.

Bibliography

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In NeurIPS, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In NeurIPS, 2017.

168

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In ICLR, 2018.

169

cloud 0.01 building­b 0.10 glass 0.04 floor 0.11

wall­b 0.13 floor­t 0.09 glass 0.14 wood 0.14

ceiling 0.01 bed­t 0.10 window 0.18 painting 0.08

lamp 0.05 bed­t 0.17 window 0.25 painting 0.11

lamp 0.05 bed­t 0.20 window 0.30 painting 0.10

lamp 0.05 bed­t 0.19 window 0.32 painting 0.11

lamp 0.05 bed­t 0.23 window 0.30 painting 0.12

Iteration 4800
27 object units
25 part units
23 material units
IoU avg 0.045

1

5

10

un
its

sky

mou
nta

in
flo

ortre
e

bu
ildi

ngsky
-t
clo

ud
tre

e-b

bu
ildi

ng
-b
tre

e-l

mou
nta

in-
t

po
lish

ed
 st

on
e

pa
int

ed
woo

d
gla

ss

5
ob

je
ct

s

6
pa

rts

4
m

at
er

ia
ls

Iteration 6400
45 object units
56 part units
32 material units
IoU avg 0.067

1

10

19

un
its

ce
ilin

g
ea

rthflo
ortre

e skyfen
ce
wall-

t
flo

or-
r

flo
or-

b
flo

or-
t

wall-
b
flo

or-
l

bu
ildi

ng
-b

ce
ilin

g-bwall-
r

bu
ildi

ng
-l

bu
ildi

ng
-t

ce
ilin

g-t

wind
ow

-t

ce
ilin

g-r
tre

e-rsky
-t

wind
ow

-r

ce
ilin

g-l
gla

ss

pa
int

ed

po
lish

ed
 st

on
e
woo

d
meta

l

6
ob

je
ct

s

18
 p

ar
ts

5
m

at
er

ia
ls

Iteration 8000
65 object units
146 part units
10 material units
IoU avg 0.070

1

14

27

un
its

ce
ilin

g
be

d

wind
owflo

or

pa
int

ing

bu
ildi

ng
be

d-bbe
d-t
be

d-r

ce
ilin

g-bbe
d-l

wind
ow

-t

ce
ilin

g-t

flo
or-

b

wind
ow

-b

ce
ilin

g-r
wall-

b

wind
ow

-l
flo

or-
r

flo
or-

l

ce
ilin

g-l

pa
int

ing
-b

wind
ow

-r
sky

-t
fab

ric
ca

rpe
t
gla

ss
woo

d

6
ob

je
ct

s

18
 p

ar
ts

4
m

at
er

ia
ls

Iteration 10001
70 object units
166 part units
6 material units
IoU avg 0.077

1

17

34
un

its

wind
ow
ce

ilin
g
flo

or

pa
int

ing
cu

rta
in
pill

ow
be

d-bbe
d-t
be

d-l
be

d-r
wall-

b

ce
ilin

g-b

wind
ow

-t

ce
ilin

g-t

ce
ilin

g-l

wind
ow

-b

ce
ilin

g-r
wall-

l

wind
ow

-l
flo

or-
r

flo
or-

b

pa
int

ing
-b
flo

or-
l

wind
ow

-r
sky

-t
wall-

r

pill
ow

-t
flo

or-
t
ca

r-t

cu
rta

in-
b

cu
rta

in-
r

ca
rpe

t
woo

d
gla

ss
6

ob
je

ct
s

25
 p

ar
ts

3
m

at
er

ia
ls

Iteration 15009
79 object units
182 part units
11 material units
IoU avg 0.084

1

20

39

un
its

ce
ilin

g

wind
ow
cu

rta
in
flo

or

pa
int

ing
pill

ow

cu
sh

ion
be

d-bbe
d-t
be

d-l
be

d-r

wind
ow

-t
wall-

b

ce
ilin

g-b

wind
ow

-b

ce
ilin

g-r

ce
ilin

g-l

wind
ow

-l

ce
ilin

g-t
wall-

l

cu
rta

in-
t

pa
int

ing
-b
wall-

r
flo

or-
t

wind
ow

-r

cu
rta

in-
b

flo
or-

b
flo

or-
r

bu
ildi

ng
-l

pill
ow

-t
flo

or-
l

pa
int

ing
-r
sky

-t

pill
ow

-r

pa
int

ing
-t

pa
int

ing
-l

bu
ildi

ng
-t

ca
rpe

t
woo

d

7
ob

je
ct

s

30
 p

ar
ts

2
m

at
er

ia
ls

Iteration 17413
87 object units
184 part units
12 material units
IoU avg 0.086

1

18

36

un
its

ce
ilin

g

wind
owflo

or

cu
rta

in
pill

ow

pa
int

ing

cu
sh

ion

bu
ildi

ng
be

d-bbe
d-l
be

d-t
wall-

b
be

d-r

wind
ow

-t

ce
ilin

g-b

wind
ow

-b

ce
ilin

g-r

ce
ilin

g-l

wind
ow

-l

cu
rta

in-
t

ce
ilin

g-t
wall-

l
wall-

r

cu
rta

in-
b

flo
or-

b

wind
ow

-r
flo

or-
r

pill
ow

-r

pill
ow

-t
flo

or-
l

pa
int

ing
-t

cu
rta

in-
l

pa
int

ing
-r

pill
ow

-l

pa
int

ing
-b
ca

rpe
t
woo

d
gla

ss

8
ob

je
ct

s

27
 p

ar
ts

3
m

at
er

ia
ls

Iteration 20000
95 object units
164 part units
12 material units
IoU avg 0.085

1

15

29

un
its

wind
ow
ce

ilin
g
flo

or

pa
int

ing
cu

rta
in
pill

ow

cu
sh

ionlam
p
be

d
be

d-bbe
d-t
be

d-l
wall-

b

wind
ow

-t
be

d-r

ce
ilin

g-b

ce
ilin

g-r

ce
ilin

g-l

ce
ilin

g-t

wind
ow

-l

wind
ow

-b
wall-

l

cu
rta

in-
t

wind
ow

-r

cu
rta

in-
b

pa
int

ing
-b
wall-

r
flo

or-
r

pill
ow

-t
flo

or-
l

pa
int

ing
-r

cu
rta

in-
l

pa
int

ing
-l

ca
rpe

t
gla

ss

9
ob

je
ct

s

24
 p

ar
ts

2
m

at
er

ia
ls

Figure A-7: The evolution of layer4 of a Progressive GAN bedroom generator as training
proceeds. The number and quality of interpretable units increases during training. Note that
in early iterations, Progressive GAN generates images at a low resolution. The top-activating
images for the same four selected units is shown for each iteration, along with the IoU and
the matched concept for each unit at that checkpoint.

170

 Units in layer Unit class distribution
layer1
512 units total

0 object units
2 part units
0 material units

iou=0.10ceiling­t layer1 #457 iou=0.07ceiling­t layer1 #194

layer2
512 units total

97 object units
63 part units
5 material units

iou=0.23window layer2 #70 iou=0.25floor layer2 #315

layer3
512 units total

86 object units
121 part units
10 material units

iou=0.27window layer3 #305 iou=0.24sofa­t layer3 #55

layer4
512 units total

86 object units
149 part units
10 material units

iou=0.28sofa layer4 #37 iou=0.15fireplace layer4 #23

layer5
512 units total

75 object units
153 part units
19 material units

iou=0.29sofa­t layer5 #190 iou=0.15painting­b layer5 #133

layer6
512 units total

72 object units
129 part units
16 material units

iou=0.31window layer6 #393 iou=0.04bookcase layer6 #308

layer7
256 units total

59 object units
48 part units
9 material units

iou=0.23painting layer7 #15 iou=0.07coffee table­t #247

layer8
256 units total

51 object units
52 part units
12 material units

iou=0.17curtain layer8 #186 iou=0.17foliage layer8 #234

layer9
128 units total

26 object units
17 part units
9 material units

iou=0.16window layer9 #89 iou=0.23wood layer9 #78

layer10
128 units total

19 object units
8 part units
11 material units

iou=0.14carpet layer10 #53 iou=0.21glass layer10 #126

layer11
64 units total

9 object units
1 part units
7 material units

iou=0.06sky layer11 #14 iou=0.11ceiling layer11 #49

layer12
64 units total

8 object units
1 part units
4 material units

iou=0.23wood layer12 #26 iou=0.04sky layer12 #19

layer13
32 units total

6 object units
0 part units
3 material units

iou=0.12carpet layer13 #13 iou=0.17wood layer13 #23

11

2

un
its

cei
ling

-t

1
pa

rt

1

22

43

un
its

cei
ling
wind

owsof
a
floo

r
sky
cur

tain

cof
fee

 tab
le

fire
pla

ce
floo

r-b
sof

a-t

cei
ling

-t
sof

a-b

cei
ling

-r

wind
ow

-b

cei
ling

-l
floo

r-r
floo

r-l

wind
ow

-r

wind
ow

-t

fire
pla

ce-
r
sof

a-l

fire
pla

ce-
l
sky

-t
car

pet

8
ob

jec
ts

15
 p

ar
ts

1
m

at
er

ial

1

18

36

un
its

cei
ling
wind

owsof
a

cof
fee

 tab
le

pai
ntin

g
cur

tainfloo
r

fire
pla

ce
floo

r-b
sof

a-b

cei
ling

-t
sof

a-t

cei
ling

-b

wind
ow

-b
wall-

t
floo

r-r

wind
ow

-t
floo

r-l
sof

a-l
wall-

b

wind
ow

-l
wall-

l
floo

r-t

fire
pla

ce-
t

cei
ling

-r

wind
ow

-r
sof

a-r

cof
fee

 tab
le-l

cei
ling

-l

pai
ntin

g-bsky
-t

cur
tain

-t

fire
pla

ce-
l

cof
fee

 tab
le-r

pai
ntin

g-r
car

pet

8
ob

jec
ts

27
 p

ar
ts

1
m

at
er

ial

1

12

24

un
its

cei
ling
wind

owsof
a

pai
ntin

g
floo

r
cur

tain

cof
fee

 tab
le

boo
kca

se

fire
pla

ceshe
lf skysof

a-t
sof

a-b
floo

r-b

wind
ow

-t

cei
ling

-t
wall-

b
sof

a-l
floo

r-r

cei
ling

-b

wind
ow

-b
floo

r-l
wall-

t

cei
ling

-r

wind
ow

-r
wall-

l

cei
ling

-l
sof

a-r
wall-

r

pai
ntin

g-b

fire
pla

ce-
r

fire
pla

ce-
t

wind
ow

-l
she

lf-t

cur
tain

-t

pai
ntin

g-r

cof
fee

 tab
le-r

cof
fee

 tab
le-t

pai
ntin

g-l
car

petgla
ss

11
 o

bje
cts

28
 p

ar
ts

2
m

at
er

ial
s

1

15

29

un
its

cei
lingsof

a
wind

ow
pai

ntin
g

boo
kca

se
cur

tainfloo
r

fire
pla

ce

cof
fee

 tab
le

cha
nde

lier
floo

r-b

cei
ling

-t
sof

a-bsof
a-t

cei
ling

-b
wall-

b
wall-

t

pai
ntin

g-b

wind
ow

-t

pai
ntin

g-l
sof

a-rwall-
l

floo
r-r
floo

r-l

cei
ling

-l

wind
ow

-r

fire
pla

ce-
l

fire
pla

ce-
t
wall-

r

cei
ling

-r
floo

r-t

wind
ow

-b
sof

a-lsky
-t

wind
ow

-l

pai
ntin

g-t

fire
pla

ce-
r

cur
tain

-t

cof
fee

 tab
le-t

pai
ntin

g-r

cof
fee

 tab
le-l

fire
pla

ce-
b

car
petgla

ss
lea

the
r

10
 o

bje
cts

32
 p

ar
ts

3
m

at
er

ial
s

1

10

20

un
its

cei
ling
wind

owsof
a

cur
tain

pai
ntin

g

fire
pla

cefloo
r

boo
kca

se

cus
hio

n
mirro

r
skysof

a-t
sof

a-b

cei
ling

-t
wall-

b

cei
ling

-b
floo

r-bwall-
t

wind
ow

-t
floo

r-t

cur
tain

-t

pai
ntin

g-l

pai
ntin

g-r
floo

r-r

wind
ow

-b
floo

r-l
wall-

r

fire
pla

ce-
t

sof
a-r

wind
ow

-l

cof
fee

 tab
le-t

cur
tain

-b

fire
pla

ce-
b

cof
fee

 tab
le-r

cei
ling

-r

cei
ling

-l

wind
ow

-r
sky

-t

pai
ntin

g-t

cof
fee

 tab
le-b

fire
pla

ce-
l

car
petgla

ss
11

 o
bje

cts

30
 p

ar
ts

2
m

at
er

ial
s

1

7

14

un
its

cei
ling
wind

owsof
a
floo

r
cur

tain

pai
ntin

g

fire
pla

ce

boo
kca

se sky

cof
fee

 tab
le

cha
nde

lier

cus
hio

n
car

pet
sof

a-b

cei
ling

-t
floo

r-b
wall-

b

cei
ling

-b
sof

a-t

pai
ntin

g-twall-
l

wind
ow

-t

cof
fee

 tab
le-t
floo

r-r

wind
ow

-b
floo

r-t
sof

a-l

cei
ling

-r

wind
ow

-r

pai
ntin

g-b

cof
fee

 tab
le-r
car

petgla
ss
wood

13
 o

bje
cts

18
 p

ar
ts

3
m

at
er

ial
s

1

6

11

un
its

cei
ling
wind

owsof
a

cur
tain

pai
ntin

g skyfloo
r

cus
hio

n
lam

p
wall-

t
sof

a-b
floo

r-b
wall-

b

wind
ow

-t

cei
ling

-b

cei
ling

-t

pai
ntin

g-l
floo

r-t

pai
ntin

g-t

pai
ntin

g-r
floo

r-l

wind
ow

-r

cei
ling

-r
sof

a-t

wind
ow

-b

cof
fee

 tab
le-t

cur
tain

-b

cur
tain

-t

pai
ntin

g-bsky
-t
sky

-b
car

petgla
ss
foli

agewood

9
ob

jec
ts

22
 p

ar
ts

4
m

at
er

ial
s

1

4

8

un
its

cei
ling
cur

tain
wind

ow
pai

ntin
g skysof

a
pla

nt

cei
ling

-t
sof

a-bfloo
r-l

wind
ow

-t
floo

r-t
floo

r-bsky
-t

wind
ow

-b

cei
ling

-b

cus
hio

n-b

pai
ntin

g-bwoodcar
petgla

ss

7
ob

jec
ts

11
 p

ar
ts

3
m

at
er

ial
s

1

3

6

un
its

cei
ling
wind

owpla
nt sky

pai
ntin

g
cur

tainfloo
r

wind
ow

-t
floo

r-b
wall-

b

cei
ling

-t

wind
ow

-b
woodgla

ss
car

pet

7
ob

jec
ts

5
pa

rts

3
m

at
er

ial
s

1

3

5

un
its

cei
ling
wind

ow
cur

tainpla
nt skywall-

b
woodgla

ss

5
ob

jec
ts

1
pa

rt

2
m

at
er

ial
s

11

2

un
its

cei
ling
wind

ow
cur

tain skypla
nt

cei
ling

-t
woodgla

ss

5
ob

jec
ts

1
pa

rt

2
m

at
er

ial
s

1

2

3

un
its

wind
ow
cei

ling
cur

tainwoodcar
pet

3
ob

jec
ts

2
m

at
er

ial
s

Figure A-8: All layers of a Progressive GAN trained to generate LSUN living room images.

171

172

Appendix B

Supplementary Material on Rewriting

a Generative Model

Figures B-1, B-2, B-3, B-4, B-5, and B-6 show additional results of our editing method

to change a model to achieve a variety of effects across an entire distribution of

generated images. Each figure illustrates a single low-rank change of a StyleGAN

v2 model derived from the user gestures shown in the top row. The twelve pairs of

images shown below the top row of each figure are the images that score highest in

the context direction 𝑑, out of a random sample of 1000: that is, these are images that

are most relevant to the user’s context selection. For each image, both the output of

the unmodified original model and the modified model are shown. All changes are

rank-one changes to the model, except Figure B-4, which is rank ten, and Figure B-6,

which is rank three.

173

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-1: Giving horses a hat to wear. After one hat is pasted onto an example of a
horse, and after the user has pointed at four other horse heads, the model is changed so that
horses in a variety of poses, settings, shapes, and sizes all get a hat on their head. This is not
merely a re-balancing of the distribution of the model. This change introduces a new kind of
image that was not generated before. The original training data does not include hats on
horses, and the original pretrained StyleGANv2 does not synthesize hats on any horses.

174

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-2: Giving horses a longer tail. Notice that the color, shape, and occlusions of
the tail vary to fit the specific horse, but in each case the tail is made longer, as demonstrated
in the pasted example.

175

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-3: Removing main windows from churches. The modified model will replace
the central window with a blank wall, or with a wall with some different details.

176

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-4: Reducing the occlusion of buildings by trees. This edit removes the trees
in front of buildings. Note that the model can still synthesize trees next to buildings.

177

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-5: Removing earrings. Removing one set of earrings generalizes to many different
types of earrings appearing in different poses.

178

ContextCopy Paste

Unmodified Changed Unmodified Changed Unmodified Changed

Figure B-6: Removing glasses. Note that glasses of different shapes are removed, and most
facial structure is recovered. This is a rank-three change. Although most of the glasses have
been removed, this edit did not remove the temples (side parts) of some glasses, and did not
remove refraction effects.

179

B.1 Solving for Λ algebraically

To strengthen our intuition, here we describe the closed-form solution for Λ in the

linear case. Recall from Equations 6.13 and 6.15:

𝑊1𝑘* = 𝑣* (B.1)

𝑊1 = 𝑊0 + Λ𝑑𝑇 (B.2)

In the above we have written 𝑑 = 𝐶−1𝑘* as in Eqn. 6.16 for berevity. Then we can

solve for both 𝑊1 and Λ simultaneously by rewriting the above system as the following

matrix product in block form:

⎡⎢⎢⎢⎣ 𝑊1 Λ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

𝐼 𝑘*

−𝑑𝑇 0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ 𝑊0 𝑣*

⎤⎥⎥⎥⎦ (B.3)

⎡⎢⎢⎢⎣ 𝑊1 Λ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ 𝑊0 𝑣*

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

𝐼 𝑘*

−𝑑𝑇 0

⎤⎥⎥⎥⎥⎥⎥⎦

−1

(B.4)

In practice, we do not solve this linear system because a neural network layer is

nonlinear. In the nonlinear case, instead of using matrix inversion, Λ is found using

the optimization in Equation 6.17.

B.2 Implementation details

Datasets To compare identical model edits in different settings, we prepare a small

set of saved editing sessions for executing an change. Each session corresponds to a

set of masks that a user has drawn in order to specify a region to copy and paste,

together with any number of context regions within generated images for a model.

180

Benchmark editing sessions are included with the source code.

Large-scale datasets are used only for pretraining the generative models. The

generative models we use are trained on the following datasets. The face model is

trained on Flickr-Faces-HQ (FFHQ) Karras [2019], a dataset of 70,000 1024×1024

face images. The outdoor church, horse, and kitchen models are trained on LSUN

image datasets Yu et al. [2015]. LSUN provides 126,000 church images, 2.2 million

kitchen images, and 2 million horse images at resolutions of 256×256 and higher.

Generators We rewrite two different generative model architectures: Progressive

GAN and StyleGAN v2. The Progressive GAN generator has 18.3 million parameters

and 15 convolutional layers; we edit a model pretrained on LSUN kitchens. We also

edit StyleGAN v2 Karras et al. [2020]. StyleGAN v2 has 30 million parameters and

14 convolutional layers (17 layers for the higher-resolution faces model). We edit

StyleGAN v2 models trained on FFHQ faces, LSUN churches, and LSUN horses. All

the model weights were those published by the original GAN model authors. For

StyleGAN v2, we apply the truncation trick with multiplier 0.5 when running the

model.

Metrics To quantify undesired perceptual differences made in edits, we use the

Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. [2018] metric to

compare unedited images to edited images. We use the default Alexnet-based LPIPS

network weights as published by the original LPIPS authors. To focus the measurement

on undesired changes, we follow the method of the GAN projection work Huh et al.

[2020] and mask out portions of the image that we intend to change, as identified by

a semantic segmentation network. For faces, we segment the image using a modified

BiSeNet Yu et al. [2018] as published by ZLL as faceparsing-Pytorch ZLL [2019]. For

churches, we segment the image using the Unified Perceptual Parsing network Xiao

et al. [2018].

To quantify the efficacy of the change, we also use pretrained networks. To detect

whether a face image is similing, we use a Slim-CNN Sharma and Foroosh [2020] facial

attribute classifier. To determine if domes have successfully been edited to other types

181

of objects, we again use the Unified Perceptual Parsing network, and we count pixels

that have changed from being classified as domes to buildings or trees.

User studies Human realism measurements are done using Amazon Mechanical

Turk (AMT). For each baseline editing method, 500 pairs of images are generated

comparing an edited image using our approach to the same image edited using a

baseline method, and two AMT workers are asked to judge which of the pair is more

realistic, for a total of 1000 comparative judgements. We do not test the fantastical

domes-to-trees edit, which is intended to be unrealistic.

B.3 Rank reduction for 𝐷𝑆

In this section we discuss the problem of transforming a user’s context selection

𝐾 ∈ R𝑁×𝑇 (Section 6.4) into a constraint subspace 𝐷𝑆 ∈ R𝑁×𝑆, where the desired

dimensionality 𝑠 ≪ 𝑡 is smaller than the number of given feature samples 𝑇 provided

in 𝐾.

We shall think of this as a lossy compression problem. Use 𝑃 to denote the

probability distribution of the layer 𝐿−1 features (unconditioned on any user selection),

and think of 𝐾 as a discrete distribution over the user’s 𝑡 context examples. We can

then use cross-entropy 𝐻(𝐾,𝑃) to quantify the information in 𝐾, measured as the

message length in a code optimized for the distribution 𝑃 . To express this information

measure in the setting used in Section 6.3, we will model 𝑃 as a zero-centered Gaussian

distribution 𝑃 (𝑘) = (2𝜋)−𝑛/2 exp−𝑘𝑇𝐶−1𝑘/2 with covariance 𝐶.

If we the normalize the basis using the ZCA whitening transform 𝑍, we can express

𝑃 as a spherical unit normal distribution in the variable 𝑘′ = 𝑍𝑘. This yields a concise

182

matrix trace expression for cross entropy:

Let 𝐶 = 𝑈Σ𝑈𝑇 be the eigenvector decomposition (B.5)

𝑍 , 𝐶−1/2 = 𝑈Σ−1/2𝑈𝑇 (B.6)

𝑘′ , 𝑍𝑘 (B.7)

𝐾 ′ , 𝑍𝐾 (B.8)

𝑃 (𝑘′) = (2𝜋)−𝑛/2 exp(−𝑘′𝑇𝑘′/2) (B.9)

𝐻(𝐾 ′, 𝑃) =
∑︁
𝑘′∈𝐾′

1

𝑡
log𝑃 (𝑘′) (B.10)

=
1

2𝑡

∑︁
𝑘′∈𝐾′

𝑘′𝑇𝑘′ +
𝑛

2𝑡
log 2𝜋 (B.11)

=
1

2𝑡
Tr
(︀
𝐾 ′𝑇𝐾 ′)︀+

𝑛

2𝑡
log 2𝜋 (B.12)

In other words, by assuming a Gaussian model, the information in the user’s context

selection can be quantified the trace of a symmetric matrix given by inner products

over the whitened context selection.

To reduce the rank of the user’s context selection, we wish to project the elements

of 𝐾 ′ by discarding information along the 𝑅 = 𝑁 − 𝑆 most uninformative directions.

Therefore, we seek a matrix 𝑄*
𝑅 ∈ R𝑁×𝑅 that has 𝑅 orthonormal columns, chosen so

that the projection of the samples 𝑄𝑅𝑄
𝑇
𝑅𝐾

′ minimize cross-entropy with 𝑃 :

𝑄*
𝑅 = arg min

𝑄𝑅

𝐻(𝑄𝑅𝑄
𝑇
𝑅𝐾

′, 𝑃) (B.13)

= arg min
𝑄𝑅

Tr
(︀
𝐾 ′𝑇𝑄𝑅𝑄

𝑇
𝑅𝑄𝑅𝑄

𝑇
𝑅𝐾

′)︀ (B.14)

= arg min
𝑄𝑅

Tr
(︀
𝑄𝑇

𝑅𝐾
′𝐾 ′𝑇𝑄𝑅

)︀
(B.15)

The trace minimization Eqn. B.15 is an instance of the well-studied trace optimization

problem Kokiopoulou et al. [2011] that arises in many dimension-reduction settings.

It can be solved by setting the columns of 𝑄*
𝑅 to a basis spanning the space of the

183

eigenvectors for the smallest 𝑅 eigenvalues of 𝐾 ′
ctx𝐾

′𝑇 .

Denote by 𝑄*
𝑆 ∈ R𝑁×𝑆 the matrix of orthonormal eigenvectors for the 𝑆 largest

eigenvalues of 𝐾 ′
ctx𝐾

′𝑇 . Then we have (𝐼 − 𝑄*
𝑅𝑄

*𝑇
𝑅)𝑘′ = 𝑄*

𝑆𝑄
*𝑇
𝑆 𝑘′, i.e., erasing the

uninteresting directions of 𝑄*
𝑅 is the same as preserving the directions 𝑄*

𝑆. This is the

𝑆-dimensional subspace that we seek: it is the maximally informative low-dimensional

subspace that captures the user’s context selection.

Once we have 𝑄*
𝑆 within the whitened basis, the same subspace can be expressed

in unwhitened row space coordinates as:

𝐷𝑆 = 𝑍𝑇𝑄*
𝑆 = 𝑍𝑄*

𝑆 (B.16)

B.4 Axis-aligned rank reduction for 𝐷𝑆

The identification of axis-aligned units most relevant to a user’s context selection can

also be analyzed using the same rank-reduction objective as Section B.3, but with a

different family for 𝑃 . Instead of modeling 𝑃 as a Gaussian with generic covariance 𝐶,

we now model it as an axis-aligned Gaussian with diagonal covariance Σ = diag(𝜎𝑖).

Then the optimal basis 𝑄*
𝑆 becomes the unit vectors for the unit directions 𝑒𝑖 that

maximize the expected ratio

∑︁
𝑘∈𝐾ctx

(𝑒𝑇𝑖 𝑘)
2

𝜎2
𝑖

(B.17)

In Section 6.5.2 this scoring is used to identify the units most relevant to watermarks

in order to apply GAN dissection unit ablation.

B.5 Experiment details and results

Table 6.2 shows the quantitative results of comparing our method with various baselines

on editing a StyleGANv2 Karras et al. [2020] LSUN church Yu et al. [2015] model. For

both edits, our method modifies the 7th convolution layer of the generator, with Adam

184

optimizer Kingma and Ba [2015], 0.05 learning rate, 2001 gradient iterations, and

projecting to a low-rank change every 10 iterations (and also after the optimization

loop). For domes → trees, a rank 1 edit is performed. (These settings are also

the defaults provided in the user interface, and were used for video demos.) For

domes → spires, a rank 10 edit is performed.

For the StyleGANv2 FFHQ Karras et al. [2019] edit shown in main paper 6.1, our

method modifies the 9th convolution layer of the generator, also with Adam optimizer

Kingma and Ba [2015], 0.05 learning rate, 2001 gradient iterations, and projecting to

a low-rank change every 10 iterations (and also after the optimization loop).

For all experiments, the baseline that finetunes all weights uses the Adam optimizer

Kingma and Ba [2015] with 2001 iterations and a learning rate of 10−4.

B.6 Reflection experiment details

In Section 6.5.3, we found the rank-one rule reversal change for the abstract window

lighting rule as follows.

1. Generation: we use the GAN to generate 15 images in two ways, one adding

windows, and one removing windows, by activating and deactivating window-

correlated units. The window correlated units are identified using dissection Bau

et al. [2019].

2. Annotation: a user masks illuminated regions of the 15 images far from the

windows that show reflected light that differs between the pairs.

3. Optimization: we optimize a change in the weights of the layer to reverse the

behavior of the reflected light in the masked areas, to match dark output when

there is a window and bright output when there is no window. This optimization

is constrained to one direction by using an SVD reduction to rank one every 10

iterations.

The optimization is computed at each individual layer, and we use the layer that

185

achieves the lowest loss with a rank-one change: for this experiment, this is layer 6 of

the model.

B.7 Selecting a layer for editing

There are two ways to view a convolutional layer: either as a computation in which

information from neighboring locations is combined to detect or produce edges,

textures, or shapes; or as a memory in which many independent feature mappings are

memorized.

In our paper we have adopted the simple view that a layer acts as an associative

memory that maps from one layer’s local feature vectors to local patches of feature

vectors in the next layer. This view is appropriate when layer representations have

features in which neighboring locations are disentangled from one another. In practice,

we find that both ProgressiveGAN and StyleGAN representations have this property.

For example, if a feature patch is rendered in isolation from neighboring features,

the network will usually render the same object as it does in the context of the full

featuremap.

In Figures B-7 and B-10, we measure the similarity between patches rendered in

isolation compared to same-sized patches cropped out of the full model, using Fréchet

Inception Distance (FID) Heusel et al. [2017]. Lower FIDs indicate less dependence

between neighboring patches, and higher FIDs indicate higher dependence between

neighbors. These graphs show that layers 6-11 in StyleGANv2 and layers 4 and

higher in Progressive GAN are most appropriate for editing as an associative memory.

(Note that in StyleGANv2, the 𝑛th featuremap layer is the output of the 𝑛 − 1th

convolutional layer, because the first featuremap layer is fixed. In Progressive GAN,

the 𝑛th featuremap layer is the output of the 𝑛th convolutional layer.)

Figures B-8 and B-9 visualize individual patches rendered in isolation at various

layers of StyleGANv2, and compare those to the entire image rendered together.

Figures B-11 and B-12 visualize the same for Progressive GAN.

186

Figure B-7: FID of rendered cropped activations with respect to random crops of StyleGANv2
generated images. In StyleGANv2, the 𝑛th convolutional layer outputs the 𝑛+1th featuremap
layer. The layer numbers above correspond to featuremap layers.

Rendered	

layer	8

patches

Rendered	

layer	6

patches

Rendered	

output

Figure B-8: Comparison of rendered cropped activations at various layers of StyleGANv2
generated LSUN church images.

187

Rendered	

layer	8

patches

Rendered	

layer	6

patches

Rendered	

output

Figure B-9: Comparison of rendered cropped activations at various layers of StyleGANv2
generated LSUN kitchen images.

Figure B-10: FID of rendered cropped activations with respect to random crops of Progressive
GAN generated images.

188

Rendered	

layer	7

patches

Rendered	

layer	5

patches

Rendered	

output

Figure B-11: Comparison of rendered cropped activations at various layers of Progressive
GAN generated LSUN church images.

189

Rendered	

layer	7

patches

Rendered	

layer	5

patches

Rendered	

output

Figure B-12: Comparison of rendered cropped activations at various layers of Progressive
GAN generated LSUN kitchen images.

190

Bibliography

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei, Joshua B. Tenenbaum,

William T. Freeman, and Antonio Torralba. Gan dissection: Visualizing and under-

standing generative adversarial networks. In ICLR, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In NeurIPS, 2017.

Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris, and Aaron Hertzmann.

Transforming and projecting images to class-conditional generative networks. In

ECCV, 2020.

Tero Karras. FFHQ dataset. https://github.com/NVlabs/ffhq-dataset, 2019.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo

Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

ICLR, 2015.

Effrosini Kokiopoulou, Jie Chen, and Yousef Saad. Trace optimization and eigenprob-

lems in dimension reduction methods. Numerical Linear Algebra with Applications,

18(3):565–602, 2011.

Ankit Sharma and Hassan Foroosh. Slim-cnn: A light-weight cnn for face attribute

prediction. In International Conference on Automatic Face and Gesture Recognition,

2020.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual

parsing for scene understanding. In ECCV, 2018.

191

https://github.com/NVlabs/ffhq-dataset

Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang.

Bisenet: Bilateral segmentation network for real-time semantic segmentation. In

ECCV, 2018.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong

Xiao. Lsun: Construction of a large-scale image dataset using deep learning with

humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

ZLL. Face-parsing pytorch. https://github.com/zllrunning/face-parsing.PyT

orch, 2019.

192

https://github.com/zllrunning/face-parsing.PyTorch
https://github.com/zllrunning/face-parsing.PyTorch

